
Integrated Plasma Simulator (IPS)
Documentation

Release 0.2.1+0.g9b88e23.dirty

UT-Battelle, LLC

Jan 07, 2021

Contents

1 Introduction 3
1.1 Where to Start? . 3
1.2 Acknowledgments . 4

2 Getting Started 5
2.1 Obtaining, Dependencies, Platforms . 5
2.2 Building and Setting up Your Environment . 6

3 User Guides 9
3.1 Reference Guide for Running IPS Simulations . 10
3.2 The Configuration File - Explained . 19
3.3 Platforms and Platform Configuration . 25
3.4 Developing Drivers and Components for IPS Simulations . 33
3.5 Create a component package . 47
3.6 Migrating from old IPS v0.1.0 to new IPS . 49
3.7 Installing IPS on NERSC . 51

4 Code Listings 53
4.1 IPS . 53
4.2 Framework . 54
4.3 Data Manager . 55
4.4 Task Manager . 56
4.5 Resource Manager . 57
4.6 Component . 61
4.7 Configuration Manager . 61
4.8 Services . 62
4.9 Other Utilities . 68
4.10 Framework Components . 70

5 Indexes and tables 73

Python Module Index 75

Index 77

i

ii

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Contents:

Contents 1

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

2 Contents

CHAPTER 1

Introduction

Welcome to the documentation for the Integrated Plasma Simulator (IPS). The documents contained here will provide
information regarding obtaining, using and developing the IPS and some associated tools.

The IPS was originally developed for the SWIM project and is designed for coupling plasma physics codes to simulate
the interactions of various heating methods on plasmas in a tokamak. The physics goal of the project is to better
understand how the heating changes the properties of the plasma and how these heating methods can be used to
improve the stability of plasmas for fusion energy production.

The IPS framework is thus designed to couple standalone codes flexibly and easily using python wrappers and file-
based data coupling. These activities are not inherently plasma physics related and the IPS framework can be consid-
ered a general code coupling framework. The framework provides services to manage:

• the orchestration of the simulation through component invocation, task launch and asynchronous event notifica-
tion mechanisms,

• configuration of complex simulations using familiar syntax,

• file communication mechanisms for shared and internal (to a component) data, as well as checkpoint and restart
capabilities,

The framework performs the task, configuration, file and resource management, along with the event service, to
provide these features.

1.1 Where to Start?

For those who have never run the IPS before, you should start with Getting Started. It starts from the beginning with
how to obtain the IPS code, build and run some sample simulations on two different platforms.

The User Guides section has documents on basic and advanced user topics. For those who have used the IPS before
or have done the tutorial and are ready to create their own run, the Reference Guide for Running IPS Simulations
document walks you through the process of using the IPS to examine a computational or physics problem, with
practical hints on what to consider through out the preparation, running and analysis/debugging processes. Additional
documentation for basic simulation construction include The Configuration File - Explained. The IPS for Driver and
Component Developers provides component developers with basic information on the construction of a component

3

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

and integrating it into the IPS, guidance on how to construct drivers and IPS services API reference. Additional
documents on advanced topics such as multiple levels of parallelism, computational considerations, fault tolerance
and performance analysis are located in the User Guides chapter.

Developers of the IPS framework and services, or brave souls who wish to understand how these pieces work, should
look at the code listings. The code listings here will include internal and external APIs. The developer guides include
information about the design of the IPS at a high level and the framework and managers at a lower level to acquaint
developers with the structures and mechanisms that are used in the IPS framework source code.

1.2 Acknowledgments

This documentation has been primarily written or adapted from other sources by Samantha Foley, as part of the SWIM
team. Don Batchelor provided examples and documentation that provided the basis for the Getting Started and Basic
IPS Usage sections. Wael Elwasif provided much of the code documentation and initial documents on the directory
structure and build process.

4 Chapter 1. Introduction

CHAPTER 2

Getting Started

This document will guide you through the process of running an IPS simulation and describe the overall structure of
the IPS. It is designed to help you build and run your first IPS simulation. It will serve as a tutorial on how to get, build,
and run your first IPS simulation, but not serve as a general reference for constructing and running IPS simulations.
See the Basic User Guides for a handy reference on running and constructing simulations in general, and for more
in-depth explanations of how and why the IPS works.

Warning: The were major changes in IPS from the old (up to July 2020) way of doing things to a new way. See
Migrating from old IPS v0.1.0 to new IPS.

2.1 Obtaining, Dependencies, Platforms

The IPS code is currently located on the GitHub repository. In order to checkout a copy, you must have git installed
on the machine you will be using. Once you have git you can check out the IPS thusly:

git clone https://github.com/HPC-SimTools/IPS-framework.git ips

2.1.1 Dependencies

IPS Proper

The IPS framework is written in Python, and requires Python 3.6+. There are a few other packages that may be needed
for certain components or utilities. The framework does use the Python package ConfigObj, however the source is
already included and no package installation is necessary (likewise for Python 3.6 and the processing module).

2.1.2 Other Utilities

Resource Usage Simulator (RUS) This is a utility for simulation the execution of tasks in the IPS for research pur-
poses.

5

http://python.org
http://configobj.readthedocs.io

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Requires: Matplotlib (which requires Numpy/Scipy)

Warning: The RUS (Resource Usage Simulator) has not been updated to python 3 or for the changes in
IPS and will not function in it current state.

Documentation The documentation you are reading now was created by a Python-based tool called Sphinx.

Requires: Sphinx

Plus anything that the components or underlying codes that you are using need (e.g., MPI, math libraries, compilers).
For the example in this tutorial, all packages that are needed are already available on the target machines and the shell
configuration script sets up your environment to use them.

2.2 Building and Setting up Your Environment

IPS can be installed directly from github with pip

python -m pip install git+https://github.com/HPC-SimTools/IPS-framework.git

otherwise you can download the source code and install from there.

You can install a particular version by, for examples version v0.2.0

python -m pip install git+https://github.com/HPC-SimTools/IPS-framework.git@v0.2.0

2.2.1 Installing IPS

Download IPS from source

git clone https://github.com/HPC-SimTools/IPS-framework.git

Install in current python environment, from within the IPS-framework source directory

python -m pip install .
or
python setup.py install

If you are using the system python and don’t want to install as root you can do a user only install with

python setup.py install --user

Install in develop mode (this doesn’t actually install the package but creates an egg link)

python setup.py develop
or
python -m pip install -e .

ips.py should now be installed in your PATH and you should be able to run ips.py --config=simulation.
config --platform=platform.conf

Note: You may need to use pip3 and python3 if you default python is not python3.

6 Chapter 2. Getting Started

https://matplotlib.org
https://numpy.org
https://numpy.org
https://www.sphinx-doc.org

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

2.2.2 Create and install in conda environment

Note: For specific instruction on setting up conda environments on NERSC set Installing IPS on NERSC.

First you need conda, you can either install the full Anaconda package or Minconda (recommenced) which is a minimal
installer for conda.

First create a conda environment and activate it, this environment is named ips. You can use any version of python
>= 3.6

conda create -n ips python=3.9
conda activate ips

Next install IPS into this environment. From within the IPS-framework source directory

python setup.py install

And you are good to go.

To leave your conda environment

conda deactivate

2.2. Building and Setting up Your Environment 7

https://www.anaconda.com/downloads
https://docs.conda.io/en/latest/miniconda.html

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

8 Chapter 2. Getting Started

CHAPTER 3

User Guides

This directory has all of the user guides for using the IPS (see the component and portal user guides for further
information pertaining to those topics). It is organized in a series of basic IPS usage topics and advanced IPS usage
topics, both are chock-full of examples and skeletons.

How do I know if I am a Basic or Advanced user? Basic IPS usage documents contain information that is intended
for those who have run a few simulations and need a refresher on how to set up and run an existing simulation.
These documents will help users run or make small modifications to existing simulations, including ways the
IPS and other utilities can be used to examine scientific problems.

Advanced IPS usage documents contain information for writers of drivers and components. These documents
will help those who wish to make new components and drivers, make significant changes to an existing compo-
nent or driver, examine the performance of the IPS and components, or those who would like to understand how
to use the multiple levels of parallelism and asynchronous communication mechanisms effectively.

Basic IPS Usage

Introduction to the IPS A handy reference for constructing and running applications, this document helps users
through the process of running a simulation based on existing components. It also includes: terminology,
examples, and guidance on how to translate a computational or scientific question into a series of IPS runs.

The Configuration File - Explained: Annotated version of the configuration file with explanations of how and why
the values are used in the framework and components.

Platform Configuration File - Explained: Annotated platform configuration file and explanation of the manual allo-
cation specification interface.

Advanced IPS Usage

The IPS for Driver and Component Developers: This guide contains the elements of components and drivers, sug-
gestions on how to construct a simulation, how to add the new component to a simulation and the repository, as
well as, an IPS services guide to have handy when writing components and drivers. This guide is for components
and drivers based on the generic driver model. More sophisticated logic and execution models are covered in
the following document.

Create a component package This guide shows an example of creating a separate component package, which depends
on the ipsframework and can be installed into you python environment. This is also an example of using
MODULE instead of SCRIPT in the component configuration section.

9

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Migration from old IPS to new IPS A guide on converting from the old (up to July 2020) way of doing things to the
new way.

Setting up environment on NERSC How to setup conda environments on NERSC for using IPS.

3.1 Reference Guide for Running IPS Simulations

This reference guide is designed to help you through the process of setting up a simulation to run. It provides instruc-
tions on how to change configuration files and how to build and run the IPS on a given platform, as well as, determine
if the simulation is setup correctly and will produce the correct data. In the various sections the user will find a series
of questions designed to help the user plan for the preparation, execution, and post-processing of a run (or series of
runs).

3.1.1 Terminology

Before going further, some basic definitions of terms that are used in the IPS must be presented. These terms are
specific to the IPS and may be used in other contexts with different meanings. These are brief definitions and designed
to remind the user of their meaning.

3.1.2 Elements of a Simulation

Head node The head node is how this documentation refers to any login, service or head node that acts as the gateway
to a cluster or MPP. It is where the Python codes and some helper scripts run, including the framework, services
and components.

Compute node A compute node is a node that exists in the compute partition of a parallel machine. It is designed for
running compute intensive and parallel applications.

Batch allocation The batch allocation is the set of (compute) nodes given to the framework by the system’s scheduler.
The framework services manage the allocation of resources and launching of tasks on compute nodes within this
allocation.

Framework The framework serves as the structure that contains the components, drivers and services for the simu-
lation(s). It provides the infrastructure for the different elements to interact. It is the piece of software that is
executed, and uses the services to invoke, run and manage the drivers, components, and tasks.

Component A component is a Python class that interacts with other components (typically the driver) and tasks using
the services. A physics component typically uses the Python class to adapt a standalone physics code to be
coupled with other components. Logically, each component contributes something to the simulation at hand,
whether it is a framework functionality, like a bridge to the portal, or a model of some physical phenomena, like
RF heating sources.

Task A task is an executable that runs on compute node(s) launched by the services on behalf of the component.
These executables are the ones who do the heavy physics computation and dominate the run time, allowing
the Python components and framework to manage the orchestration and other services involved in managing a
multiphysics simulation. Most often tasks are parallel codes using MPI for interprocess communication.

Driver (Component) The driver is a special component in that it is the first one to be executed for the simulation. It
is responsible for invoking its constituent components, implementing the time stepping and other logic among
components, and global data operations, such as checkpointing.

Init (Component) The init component is a special in that it is invoked by the framework and is the first one to be
executed for the simulation. It is responsible for performing any initialization needed by the driver before it
begins its execution cycle.

10 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Port A port is a category of component that can be implemented by different component implementations, i.e., com-
ponents that wrap codes that different mathematical models of the same phenomenon. Each component that
has the same port must implement the same interface (i.e., implement functions with the same names - in the
IPS all components implement “init”, “step”, and “finalize”), and provide the same functionality in a coupled
simulation. In most cases, this means that it updates the same values in the plasma state. Drivers use the port
name of a component to obtain a reference for that component at run time, as specified in the configuration file.

Services The framework services provide APIs for setting up the simulation, and managing data, resources, tasks,
component invocations, access to configuration data and communication via an event service during execution.
For more details, see code listings. Component writers should check out the services API for relevant services
and tips on how to use them.

Data files Each component specifies the input and output data files it needs for a given simulation. These file names
and locations are used to stage data in and out for each time step. Note that these are not the same as the plasma
state files, in that data files are component local (and thus private).

Plasma State files The plasma state is a utility and set of files that allow multiple components to contribute values to
a set of files representing the shared data about the plasma. These shared files are specified in the configuration
file and access is managed through the framework services data management API. Component writers may
need to write scripts to translate between plasma state files and the files expected/generated by the underlying
executable.

Configuration file The configuration file allows the user to describe how a simulation is to be run. It uses a third-
party Python package called ConfigObj to easily parse the shell-like, hierarchical syntax. In the configuration
file there are sections describing the following aspects of the simulation. They are all explained in further detail
in The Configuration File - Explained.

Platform Configuration file The platform configuration file contains platform specific information needed by the
framework for task and resource management, as well as paths needed by the portal and configuration manager.
These rarely change, so the version in the top level of the IPS corresponding to the platform you are running on
should be used.

Batch script The batch script tells the batch scheduler how and what to run, including the number of processes and
nodes for the allocation, the command to launch the IPS, and any other information that the batch scheduler
needs to know to run your job.

3.1.3 Sample workflow

This section consists of an outline of how the IPS is intended to be used. It will walk you through the steps from
forming an idea of what to run, through running it and analyzing the results. This will also serve as a reference for
running IPS simulations. If you are not comfortable with the elements of an IPS simulation, then you should start with
the sample simulations in Getting Started and review the terminology above.

Problem Formation

Before embarking on a simulation experiment, the problem that you are addressing needs to be determined. The prob-
lem may be a computational one where you are trying to determine if a component works properly, or an experiment
to determine the scalability or sensitivity to computation parameters, such as time step length or number of particles.
The problem may pertain to a study of how a component, or set of components, compare to previous results or real
data. The problem may be to figure out for a set of variations which one produces the most stable plasma conditions.
In each case, you will need to determine:

• what components are needed to perform this experiment?

• what input files must be obtained, prepared or generated (for each component and the simulation as a whole)?

• does this set of components make sense?

3.1. Reference Guide for Running IPS Simulations 11

http://www.voidspace.org.uk/python/configobj.html

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

• what driver(s) are needed to perform this experiment?

• do new components and drivers need to be created?

• does it make sense to run multiple simulations in a single IPS instance?

• how will multiple simulations effect the computational needs and amount of data that is produced?

• what plasma state files are needed?

• where will initial plasma state values (and those not modeled by components in this scenario) come from?

• how much compute time and resources are needed for each task? the simulation as a whole?

• are there any restrictions on where or when this experiment can be run?

• how will the output data be analyzed?

• where will the output data go when the simulation is completed?

• when and where will the output data be analyzed?

Once you have a plan for constructing, managing and analyzing the results of your simulation(s), it is time to begin
preparation.

A Brief Introduction to Writing and Modifying Components

In many cases, new components or modifications to existing components need to be made. In this section, the anatomy
of a component and a driver are explained for a simple invocation style of execution. (see Advanced User Guide for
more information on creating components and drivers with complex logic, parallelism and asynchronous control flow).

Each component is derived from the Component class, meaning that each IPS component inherits a few base ca-
pabilities, and then must augment them. Each IPS component must implement the following function bodies for the
component class:

init(self, timeStamp=0) This function performs pre-simulation setup activities such as reading in global
configuration parameters, checking configuration parameters, updating input files and internal state. (Compo-
nent configuration parameters are populated before init is ever called.)

step(self, timeStamp=0) This function is the main part of the component. It is responsible for launching
any tasks, and managing the input, output and plasma state during the course of the step.

finalize(self, timeStamp=0) This function is called after the simulation has completed and performs any
clean up that is required by the component. Typically there is nothing to do.

checkpoint(self, timeStamp=0) This function performs a checkpoint for the component. All of the files
marked as restart files in the configuration file are automatically staged to the checkpoint area. If the component
has any internal knowledge or logic, or if there are any additional files that are needed to restart, this should be
done explicitly here.

restart(self, timeStamp=0) This function replaces init when restarting a simulation from a previous
simulation step. It should read in data from the appropriate files and set up the component so that it is ready to
compute the next step.

To create a new component, there are two ways to do it, start from “scratch” by copying and renaming the skele-
ton component (skeleton_comp.py) to your desired location, or by modifying an existing component (e.g.,
example_comp.py). When creating your new component, keep in mind that it should be somewhat general and
usable in multiple contexts. In general, for things that change often, you will want to use component configuration
variables or input files to drive the logic or set parameters for the tasks. For more in depth information about how to
create components and add them to the build process, see Developing Drivers and Components for IPS Simulations.

When changing an existing component that will diverge from the existing version, be sure to create a new version. If
you are editing an existing component to make it better, be sure to document what you changexs.

12 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Setup Simulation

At this point, all components and drivers should be added to the repository, and any makefiles modified or created (see
makefile section of component writing guide). You are now ready to set up the execution environment, build the IPS,
and prepare the input and configuration files.

Execution Environment

First, the platform on which to run the simulation must be determined. When choosing a platform, take in to consid-
eration:

• The parallelism of the tasks you are running

– Does your problem require 10s, 100s or 1000s of cores?

– How well do your tasks take advantage of “many-core” nodes?

• The location of the input files and executables

– Does your input data exist on a suitable platform?

– Is it reasonable to move the data to another machine?

• Time and CPU hours

– How much time will it take to run the set of simulations for the problem?

– Is there enough CPU time on the machine you want to use?

• Dealing with results

– Do you have access to enough hard drive space to store the output of the simulation until you have the time
to analyze and condense it?

Once you have chosen a suitable platform, you may install IPS, see Building and Setting up Your Environment.

Second, construct input files or edit the appropriate ones for your simulation. This step is highly dependent on your
simulation, but make sure that you check for the following things (and recheck after constructing the configuration
file!):

• Does each component have all the input files it needs?

• Are there any global initial files, and are they present? (This includes any plasma state and non-plasma state
files.)

• For each component input file: Are the values present, valid, and consistent?

• For the collection of files for each component: Are the values present, valid, and consistent?

• For the collection of files for each simulation: Are the values present, valid, and consistent?

• Do the components model all of the targeted domain and phenomena of the experiment?

• Does the driver use the components you expect?

• Does the driver implement the data dependencies between the components as you wish?

Third, you must construct the configuration file. It is helpful to start with a configuration file that is related to the
experiment you are working on, or you may start from the example configuration file, and edit it from there. Some
configuration file values are user specific, some are platform specific, and others are simulation or component specific.
It may be helpful to save your personal versions on each machine in your home directory or some other persistent
storage location for reuse and editing. These tend not to be good files to keep in subversion, however there are some
examples in the example directory to get you started. The most common and required configuration file entries are

3.1. Reference Guide for Running IPS Simulations 13

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

explained here. For more a more complete description of the configuration options, see The Configuration File -
Explained.

• User Data Section:

USER_W3_DIR = <location of your web directory on this platform>
USER_W3_BASEURL = <URL of your space on the portal>
USER = <user name> # Optional, if missing the unix username is used

Set these values to the www directory you created for your own runs, a matching url for the portal to store your
run info, and your user name (this is used on the portal to identify simulations you run). These should be the
same for all of your runs on a given platform.

• Simulation Info Section:

RUN_ID = <short name of run>
TOKAMAK_ID = <name of the tokamak>
SHOT_NUMBER = 1
...
SIM_NAME = ${RUN_ID}_${SHOT_NUMBER}

OUTPUT_PREFIX =

SIM_ROOT = <location of output tree>

RUN_COMMENT = <used by portal to help identify what ran and why>
TAG = <grouping string>
...
SIMULATION_MODE = NORMAL
RESTART_TIME =
RESTART_ROOT = ${SIM_ROOT}

In this section the simulation is described and key locations are specified. RUN_COMMENT and TAG,
along with RUN_ID, TOKAMAK_ID, and SHOT_NUMBER are used by the portal to describe this simulation.
RUN_ID, TOKAMAK_ID, and SHOT_NUMBER are commonly used to construct the SIM_NAME, which is of-
ten used in as the directory name of the SIM_ROOT. And finally, the SIMULATION_MODE and related items
identify the simulation as a NORMAL or RESTART run.

• Logging Section:

LOG_FILE = ${RUN_ID}_sim.log
LOG_LEVEL = DEBUG | WARN | INFO | CRITICAL

The logging section defines the name of the log file and the default level of logging for the simulation. The
log file for the simulation will contain all logging messages generated by the components in this simulation.
Logging messages from the framework and services will be written to the framework log file. The LOG_LEVEL
may be the following and may differ from the framework log level (in order of most verbose to least)1:

– DEBUG - all messages are produced, including debugging messages to help diagnose problems. Use this
setting for debugging runs only.

– INFO - these are messages stating what is happening, as opposed to what is going wrong. Use this logging
level to get an idea of how the different pieces of the simulation interact, without extraneous messages
from the debugging level.

– WARN - these messages are produced when the framework or component expects different conditions, but
has an alternative behavior or default value that is also valid. In most cases these messages are harmless,
but may indicate a behavior that is different than expected. This is the most common logging level.

1 For more information and guidance about how the Python logging module works, see the Python logging module tutorial.

14 Chapter 3. User Guides

http://docs.python.org/howto/logging.html

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

– ERROR - conditions that throw exceptions typically also produce an error message through the logging
mechanism, however not all errors result in the failure of a component or the framework.

– CRITICAL - only messages about fatal errors are produced. Use this level when using a well known and
reliable simulation.

• Plasma State Section:

STATE_WORK_DIR = ${SIM_ROOT}/work/plasma_state

Config variables defining simulation specific names for plasma state files
CURRENT_STATE = ${SIM_NAME}_ps.cdf
PRIOR_STATE = ${SIM_NAME}_psp.cdf
NEXT_STATE = ${SIM_NAME}_psn.cdf
CURRENT_EQDSK = ${SIM_NAME}_ps.geq
CURRENT_CQL = ${SIM_NAME}_ps_CQL.dat
CURRENT_DQL = ${SIM_NAME}_ps_DQL.nc
CURRENT_JSDSK = ${SIM_NAME}_ps.jso

List of files that constitute the plasma state
STATE_FILES1 = ${CURRENT_STATE} ${PRIOR_STATE} ${NEXT_STATE} ${CURRENT_EQDSK}
STATE_FILES2 = ${CURRENT_CQL} ${CURRENT_DQL} ${CURRENT_JSDSK}
STATE_FILES = ${STATE_FILES1} ${STATE_FILES2}

Specifies the naming convention for the plasma state files so the framework and components can manipulate and
reference them in the config file and during execution. The initial file locations are also specified here.

• Ports Section:

[PORTS]
NAMES = INIT DRIVER MONITOR EPA RF_IC NB FUS

Required ports - DRIVER and INIT
[[DRIVER]]

IMPLEMENTATION = GENERIC_DRIVER

[[INIT]]
IMPLEMENTATION = minimal_state_init

Physics ports
[[RF_IC]]

IMPLEMENTATION = model_RF_IC

[[FP]]
IMPLEMENTATION = minority_model_FP

[[FUS]]
IMPLEMENTATION = model_FUS

[[NB]]
IMPLEMENTATION = model_NB

[[EPA]]
IMPLEMENTATION = model_EPA

[[MONITOR]]
IMPLEMENTATION = monitor_comp_4

The ports section specifies which ports are included in the simulation and which implementation of the port is
to be used. Note that a DRIVER must be specified, and a warning will be issued if there is no INIT compo-

3.1. Reference Guide for Running IPS Simulations 15

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

nent present at start up. The value of IMPLEMENTATION for a given port must correspond to a component
description below.

• Component Configuration Section:

[<component name>]
CLASS = <port name>
SUB_CLASS = <type of component>
NAME = <class name of component implementation>
NPROC = <# of procs for task invocations>
BIN_PATH = <location of binaries>
INPUT_DIR = ${DATA_TREE_ROOT}/<location of input directory>

INPUT_FILES = <input files for each step>
OUTPUT_FILES = <output files to be archived>
STATE_FILES = ${CURRENT_STATE} ${NEXT_STATE} ${CURRENT_EQDSK}
RESTART_FILES = ${INPUT_FILES} <extra state files>

SCRIPT = ${BIN_PATH}/<component implementation>
MODULE = <module name to use instead of script e.g. package.component>

For each component, fill in or modify the entry to match the locations of the input, output, plasma state, and script
locations. Also, be sure to check the NPROC entry to suit the problem size and scalability of the executable,
and add any component specific entries that the component implementation calls for. It allows multiple users to
access the same data and have reasonable assurance that they are indeed using the same versions. The plasma
state files must be part of the simulation plasma state. It may be a subset if there are files that are not needed
by the component on each step. Additional component-specific entries can also appear here to signal a piece of
logic or set a data value.

• Checkpoint Section:

[CHECKPOINT]
MODE = WALLTIME_REGULAR
WALLTIME_INTERVAL = 15
NUM_CHECKPOINT = 2
PROTECT_FREQUENCY = 5

This section specifies the checkpoint policy you would like enforced for this simulation, and the corresponding pa-
rameters to control the frequency and number of checkpoints taken. See the comments in the same configuration file
or the configuration file documentation. If you are debugging or running a component or simulation for the first time,
it is a good idea to take frequent checkpoints until you are confident that the simulation will run properly.

• Time Loop Section:

[TIME_LOOP]
MODE = REGULAR
START = 0.0
FINISH = 20.0
NSTEP = 5

This section sets up the time loop to help the driver manage the time progression of the simulation. If you are
debugging or running a component or simulation for the first time, it is a good idea to take very few steps until
you are confident that the simulation will run properly.

Lastly, double-check that your input files and config file are both self-consistent and make physics sense.

Run Simulation

Now, that you have everything set up, it is time to construct the batch script to launch the IPS. Just like the configuration
files, this is something that tends to be user specific and platform specific, so it is a good idea to keep local copy in a

16 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

persistant directory on each platform you tend to use for easy modification.

As an example, here is a skeleton of a batch script:

#! /bin/bash
#PBS -A <project code for accounting>
#PBS -N <name of simulation>
#PBS -j oe # joins stdout and stderr
#PBS -l walltime=0:6:00
#PBS -l mppwidth=<number of *cores* needed>
#PBS -q <queue to submit job to>
#PBS -S /bin/bash
#PBS -V

ips.py [--config=<config file>]+ \
--platform=platform.conf \
--log=<name of log file> \

[--debug] \
[--nodes=<number of nodes in this allocation>] \
[--ppn=<number of processes per node for this allocation>]

Note that you can only run one instance of the IPS per batch submission, however you may run multiple simulations
in the same batch allocation by specifying multiple --config=<config file> entries on the command line.
Each config file must have a unique file name, and SIM_ROOT. The different simulations will share the resources in
the allocation, in many cases improving the resource efficiency, however this may make the execution time of each
individual simulation a bit longer due to waiting on resources.

The IPS also needs information about the platform it is running on (--platform=platform.conf) and a log
file (--logfile=<name of log file>)for the framework output. Platform files for commonly used platforms
are provided in the top-level of the ips directory. It is strongly recommended that you use the appropriate one for
launching IPS runs. See Platforms and Platform Configuration for more information on how to use or create these
files.

Lastly, there are some optional command line arguments that you may use. --debug will turn on debugging infor-
mation from the framework. --nodes and --ppn allow the user to manually set the number of nodes and processes
per node for the framework. This will override any detection by the framework and should be used with caution. It is,
however, a convenient way to run the ips on a machine without a batch scheduler.

Analysis and/or Debugging

Once your run (or set of runs) is done, it is time to look at the output. First, we will examine the structure of the output
tree:

${SIM_ROOT}/

${PORTAL_RUNID}

File containing the portal run ids that are associated with this directory. There can be
more than one.

<platform config file>

<simulation configuration files>

Each simulation configuration file that used this sim root.

restart/

<each checkpoint>/

<each component>/

3.1. Reference Guide for Running IPS Simulations 17

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Directory containing the restart files for this checkpoint

simulation_log/

Directory containing the event log for each runid.

simulation_results/

<each time step>/

components/

<each component>/

Directory containing the output files for the given component at
the given step.

<each component>/

Directory containing the output files for each step. File names are appended
with the time step to avoid collisions.

simulation_setup/

<each component>/

Directory containing the input files from the beginning of the simulation.

work/

<each component>/

Directory where the component computes from time step to time step. Left-
over input and output files from the last step will be present at the end of the
simulation.

There are a few tools for visualizing (and light analysis) of a run or set of runs:

• Portal web interface to PCMF: This tool is a web interface to the PCMF tool (see below). It has recently been
integrated into the portal for quick and remote viewing. For more in depth analysis, viewing and printing of
graphs from the monitor component, use the more powerful standalone version of PCMF.

• PCMF: A tool to Plot and Compare multiple Monitor Files (ips/components/monitor/monitor_4/
PCMF.py) is the local Python version of the web tool. It uses Matplotlib to generate plots of the different values
in the plasma state over the course of the simulation. It also allows you to generate graphs for more than one set
of monitor files. Examples and instructions are located in the repo and are coming soon to this documentation.

• ELVis: This tool graphs values from netCDF (plasma state) files through a web browser plugin or using the Java
client.

Using these utilities, your own scripts or manual inspection results can be analyzed, or bugs found. Debugging a
coupled simulation is more complicated than debugging a standalone code. Here are some things to consider when a
problem is encountered:

• Problems using the framework

– Was an exception thrown? If so, what was it and where did it come from? If you don’t understand the
exception, talk to a framework developer.

– Was something missing in the configuration file?

– Were the components invoked and tasks launched as expected?

– Did you use the proper implementation of the component and executable?

– Was your compute environment/permissions/batch allocation set up properly?

18 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

• Data between components

– Does each component update all the values in the plasma state it needs to?

– Does each component update all output files it uses internally properly?

– Are the components updating the plasma state in the right order?

• Physics code problem

– Did a task return an error code?

– Does the component check for a bad return code and handle it properly?

– Is the code that is launched have the proper command line arguments?

– Are the input and output files properly adapted to the executable?

– Does the executable fail in standalone mode?

– Was the executable built properly?

– Were all necessary input and source files found?

If you are working out a problem, it is always good to:

• Turn on debugging output using the --debug flag on the command line, and setting the LOG_LEVEL in the
configuration file to DEBUG.

• Turn on debugging output in physics codes to see what is going on during each task.

• Use frequent checkpoints to restart close to where the problem starts.

• Reduce the number of time steps to the minimum needed to produce the problem.

• Only change one thing before rerunning the simulation to determine what fixes the problem.

3.2 The Configuration File - Explained

This section will detail the different sections and fields of the configuration file and how they relate to a simulation.
The configuration file is designed to let the user to easily set data items used by the framework, components, tasks,
and the portal from run to run. There are user specific, platform specific, and component specific entries that need
to be modified or verified before running the IPS in the given configuration. After a short overview of the syntax of
the package used by the framework to make sense of the configuration file, a detailed explanation of each line of the
configuration file is presented.

3.2.1 Syntax and the ConfigObj module

ConfigObj is a Python package for reading and writing config files. The syntax is similar to shell syntax (e.g., use of
$ to reference variables), uses square brackets to create named sections and nested subsections, comma-separated lists
and comments indicated by a “#”.

In the example configuration file below, curly braces ({}) are used to clarify references to variables with underscores
(_). Any left-hand side value can be used as a variable after it is defined. Additionally, any platform configuration
value can be referenced as a variable in the configuration file as well.

3.2. The Configuration File - Explained 19

http://www.voidspace.org.uk/python/configobj.html

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

3.2.2 Configuration File - Line by Line

Platform Configuration Override Section It is possible for the configuration file to override entries in the platform
configuration file. It is rare and users should use caution when overriding these values. See Platform Configuration
File - Explained for details on these values.

#HOST =
#MPIRUN =
#NODE_ALLOCATION_MODE =

User Data Section

The following items are specific to the user and should be changed accordingly. They will help you to identify
your runs in the portal (USER), and also store the data from your runs in particular web-enabled locations for post-
processing (USER_W3_DIR on the local machine, USER_W3_BASEURL on the portal). All of the items in this section
are optional.

USER_W3_DIR = /project/projectdirs/m876/www/ssfoley
USER_W3_BASEURL = http://portal.nersc.gov/project/m876/ssfoley
USER = ssfoley # Optional, if missing the unix username is used

Simulation Information Section These items describe this configuration and is used for describing and locating its
output, information for the portal, and location of the source code of the IPS.

** Mandatory items: SIM_ROOT, SIM_NAME, LOG_FILE

RUN_ID, TOKOMAK_ID, SHOT_NUMBER - identifiers for the simulation that are helpful for SWIM users. They ore
often used to form a hierarchical name for the simulation, identifying related runs.

OUTPUT_PREFIX - used to prevent collisions and overwriting of different simulations using the same SIM_ROOT.

SIM_NAME - used to identify the simulation on the portal, and often to name the output tree.

LOG_FILE - name of the log file for this simulation. The framework log file is specified at the command line.

LOG_LEVEL - sets the logging level for the simulation. If empty, the framework log level is used, which defaults to
WARNING. See Logging for details on the logging capabilities in the IPS. Possible values: DEBUG, INFO, WARNING,
ERROR, EXCEPTION, CRITICAL.

SIM_ROOT - location of output tree. This directory will be created if it does not exist. If the directory already exists,
then data files will be added, possibly overwriting existing data.

RUN_ID = Model_seq # Identifier for this simulation run
TOKAMAK_ID = ITER
SHOT_NUMBER = 1 # Identifier for specific case for this tokamak

(should be character integer)

SIM_NAME = ${RUN_ID}_${TOKAMAK_ID}_${SHOT_NUMBER}

OUTPUT_PREFIX =
LOG_FILE = ${RUN_ID}_sim.log
LOG_LEVEL = DEBUG # Default = WARNING

Simulation root - path of the simulation directory that will be constructed
by the framework
SIM_ROOT = /scratch/scratchdirs/ssfoley/seq_example

Description of the simulation for the portal
SIMULATION_DESCRIPTION = sequential model simulation using generic driver.py

(continues on next page)

20 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

(continued from previous page)

RUN_COMMENT = sequential model simulation using generic driver.py
TAG = sequential_model # for grouping related runs

Simulation Mode

This section describes the mode in which to run the simulation. All values are optional.

SIMULATION_MODE - describes whether the simulation is starting from init (NORMAL) or restarting from a check-
point (RESTART). The default is NORMAL. For RESTART, a restart time and directory must be specified. These
values are used by the driver to control how the simulation is initialized. RESTART_TIME must coincide with a check-
point save time. RESTART_DIRECTORY may be $SIM_ROOT if there is an existing current simulation there, and the
new work will be appended, such that it looks like a seamless simulation.

NODE_ALLOCATION_MODE - sets the default execution mode for tasks in this simulation. If the value is EXCLU-
SIVE, then tasks are assigned whole nodes. If the value is SHARED, sub-node allocation is used so tasks can shared
nodes thus using the allocation more efficiently. It is the users responsibility to understand how node sharing will
impact the performance of their tasks.

SIMULATION_MODE = NORMAL # NORMAL | RESTART
RESTART_TIME = 12 # time step to restart from
RESTART_ROOT = ${SIM_ROOT}
NODE_ALLOCATION_MODE = EXCLUSIVE # SHARED | EXCLUSIVE

Plasma State Section

The locations and names of the plasma state files are specified here, along with the directory where the global plasma
state files are located in the simulation tree. It is common to specify groups of plasma state files for use in the
component configuration sections. These files should contain all the shared data values for the simulation so that they
can be managed by the driver.

STATE_WORK_DIR = ${SIM_ROOT}/work/plasma_state

Config variables defining simulation specific names for plasma state files
CURRENT_STATE = ${SIM_NAME}_ps.cdf
PRIOR_STATE = ${SIM_NAME}_psp.cdf
NEXT_STATE = ${SIM_NAME}_psn.cdf
CURRENT_EQDSK = ${SIM_NAME}_ps.geq
CURRENT_CQL = ${SIM_NAME}_ps_CQL.dat
CURRENT_DQL = ${SIM_NAME}_ps_DQL.nc
CURRENT_JSDSK = ${SIM_NAME}_ps.jso

List of files that constitute the plasma state
STATE_FILES1 = ${CURRENT_STATE} ${PRIOR_STATE} ${NEXT_STATE} ${CURRENT_EQDSK}
STATE_FILES2 = ${CURRENT_CQL} ${CURRENT_DQL} ${CURRENT_JSDSK}
STATE_FILES = ${STATE_FILES1} ${STATE_FILES2}

Ports Section

The ports section identifies which ports and their associated implementations that are to be used for this simulation.
The ports section is defined by [PORTS]. NAMES is a list of port names, where each needs to appear as a subsection
(e.g., [[DRIVER]]). Each port definition section must contain the entry IMPLEMENTATION whose value is the
name of a component definition section. These are case sensitive names and should be named such that someone
familiar the components of this project has an understanding of what is being modeled. The only mandatory port is
DRIVER. It should be named DRIVER, but the implementation can be anything, as long as it is defined. If no INIT
port is defined, then the framework will produce a warning to that effect. There may be more port definitions than
listed in NAMES.

3.2. The Configuration File - Explained 21

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

[PORTS]
NAMES = INIT DRIVER MONITOR EPA RF_IC NB FUS

Required ports - DRIVER and INIT
[[DRIVER]]

IMPLEMENTATION = GENERIC_DRIVER

[[INIT]]
IMPLEMENTATION = minimal_state_init

Physics ports

[[RF_IC]]
IMPLEMENTATION = model_RF_IC

[[FP]]
IMPLEMENTATION = minority_model_FP

[[FUS]]
IMPLEMENTATION = model_FUS

[[NB]]
IMPLEMENTATION = model_NB

[[EPA]]
IMPLEMENTATION = model_EPA

[[MONITOR]]
IMPLEMENTATION = monitor_comp_4

Component Configuration Section

Component definition and configuration is done in this “section.” Each component configuration section is defined as
a section (e.g., [model_RF_IC]). Each entry in the component configuration section is available to the component
at runtime using that name (e.g., self.NPROC), thus these values can be used to create specific simulation cases using
generic components. Variables defined within a component configuration section are local to that section, but values
may be defined in terms of the simulation values defined above (e.g., STATE_FILES).

** Mandatory entries: SCRIPT, NAME, BIN_PATH, INPUT_DIR

CLASS - commonly this is the port name or the first directory name in the path to the component implementation in
ips/components/.

SUB_CLASS - commonly this is the name of the code or method used to model this port, or the second directory name
in the path to the component implementation in ips/components/.

NAME - name of the class in the Python script that implements this component.

MODULE - module name to use instead of script e.g. package.component, see Create a component package for
an example.

NPROC - number of processes on which to launch tasks.

BIN_PATH - path to script and any other helper scripts and binaries. This is used by the framework and component to
find and execute helper scripts and binaries.

BINARY - the binary to launch as a task. Typically, these binaries are found in the

PHYS_BIN or some subdirectory therein. Otherwise, you can make your own variable and put the directory where the
binary is located there.

22 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

INPUT_DIR - directory where the input files (listed below) are found. This is used during initialization to copy the
input files to the work directory of the component.

INPUT_FILES - list of files (relative to INPUT_DIR) that need to be copied to the component work directory on
initialization. OUTPUT_FILES - list of output files that are produced that need to be protected and archived on a call
to services.ServicesProxy.stage_output_files().

STATE_FILES - list of plasma state files used and modified by this component. If not present, then the files specified
in the simulation entry STATE_FILES is used.

RESTART_FILES - list of files that need to be archived as the checkpoint of this component.

NODE_ALLOCATION_MODE - sets the default execution mode for tasks in this component. If the value is EX-
CLUSIVE, then tasks are assigned whole nodes. If the value is SHARED, sub-node allocation is used so tasks
can share nodes thus using the allocation more efficiently. If no value or entry is present, the simulation value
for NODE_ALLOCATION_MODE is used. It is the users responsibility to understand how node sharing will im-
pact the performance of their tasks. This can be overridden using the whole_nodes and whole_sockets arguments to
services.ServicesProxy.launch_task().

Additional values that are specific to the component may be added as needed, for example certain data values like
PPN, paths to and names of other executables used by the component or alternate NPROC values are examples. It is
the responsibility of the component writer to make sure users know what values are required by the component and
what the valid values are for each.

[model_EPA]
CLASS = epa
SUB_CLASS = model_epa
NAME = model_EPA
NPROC = 1
BIN_PATH = /path/to/bin
INPUT_DIR = ${DATA_TREE_ROOT}/model_epa/ITER/hy040510/t20.0

INPUT_STATE_FILE = hy040510_002_ps_epa__tsc_4_20.000.cdf
INPUT_EQDSK_FILE = hy040510_002_ps_epa__tsc_4_20.000.geq
INPUT_FILES = model_epa_input.nml ${INPUT_STATE_FILE} ${INPUT_EQDSK_FILE}
OUTPUT_FILES = internal_state_data.nml
STATE_FILES = ${CURRENT_STATE} ${NEXT_STATE} ${CURRENT_EQDSK}
RESTART_FILES = ${INPUT_FILES} internal_state_data.nml

SCRIPT = ${BIN_PATH}/model_epa_ps_file_init.py

[monitor_comp_4]
CLASS = monitor
SUB_CLASS =
NAME = monitor
NPROC = 1
W3_DIR = ${USER_W3_DIR} # Note this is user specific
W3_BASEURL = ${USER_W3_BASEURL} # Note this is user specific
TEMPLATE_FILE= basic_time_traces.xml
BIN_PATH = /path/to/bin
INPUT_DIR = /path/to/components/monitor/monitor_4
INPUT_FILES = basic_time_traces.xml
OUTPUT_FILES = monitor_file.nc
STATE_FILES = ${CURRENT_STATE}
RESTART_FILES = ${INPUT_FILES} monitor_restart monitor_file.nc
SCRIPT = ${BIN_PATH}/monitor_comp.py

Checkpoint Section

This section describes when checkpoints should be taken by the simulation. Drivers should be written such that at the
end of each step there is a call to services.ServicesProxy.checkpoint_components(). This way the
services use the settings in this section to either take a checkpoint or not.

3.2. The Configuration File - Explained 23

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Selectively checkpoint components in comp_id_list based on the configuration section CHECKPOINT. If Force is
True, the checkpoint will be taken even if the conditions for taking the checkpoint are not met. If Protect is True,
then the data from the checkpoint is protected from clean up. Force and Protect are optional and default to False.

The CHECKPOINT_MODE option controls determines if the components checkpoint methods are invoked. Possible
MODE options are:

WALLTIME_REGULAR: checkpoints are saved upon invocation of the service call
checkpoint_components(), when a time interval greater than, or equal to, the value of the configuration
parameter WALLTIME_INTERVAL had passed since the last checkpoint. A checkpoint is assumed to have
happened (but not actually stored) when the simulation starts. Calls to checkpoint_components()
before WALLTIME_INTERVAL seconds have passed since the last successful checkpoint result in a NOOP.

WALLTIME_EXPLICIT: checkpoints are saved when the simulation wall clock time exceeds one of the (ordered)
list of time values (in seconds) specified in the variable WALLTIME_VALUES. Let [t_0, t_1, . . . , t_n] be the list
of wall clock time values specified in the configuration parameter WALLTIME_VALUES. Then checkpoint(T) =
True if T >= t_j, for some j in [0,n] and there is no other time T_1, with T > T_1 >= T_j such that checkpoint(T_1)
= True. If the test fails, the call results in a NOOP.

PHYSTIME_REGULAR: checkpoints are saved at regularly spaced “physics time” intervals, specified in the con-
figuration parameter PHYSTIME_INTERVAL. Let PHYSTIME_INTERVAL = PTI, and the physics time stamp
argument in the call to checkpoint_components() be pts_i, with i = 0, 1, 2, . . . Then checkpoint(pts_i) = True if
pts_i >= n PTI , for some n in 1, 2, 3, . . . and pts_i - pts_prev >= PTI, where checkpoint(pts_prev) = True and
pts_prev = max (pts_0, pts_1, ..pts_i-1). If the test fails, the call results in a NOOP.

PHYSTIME_EXPLICIT: checkpoints are saved when the physics time equals or exceeds one of the (ordered) list
of physics time values (in seconds) specified in the variable PHYSTIME_VALUES. Let [pt_0, pt_1, . . . , pt_n]
be the list of physics time values specified in the configuration parameter PHYSTIME_VALUES. Then check-
point(pt) = True if pt >= pt_j, for some j in [0,n] and there is no other physics time pt_k, with pt > pt_k >= pt_j
such that checkpoint(pt_k) = True. If the test fails, the call results in a NOOP.

The configuration parameter NUM_CHECKPOINT controls how many checkpoints to keep on disk. Checkpoints are
deleted in a FIFO manner, based on their creation time. Possible values of NUM_CHECKPOINT are:

• NUM_CHECKPOINT = n, with n > 0 –> Keep the most recent n checkpoints

• NUM_CHECKPOINT = 0 –> No checkpoints are made/kept (except when Force = True)

• NUM_CHECKPOINT < 0 –> Keep ALL checkpoints

Checkpoints are saved in the directory ${SIM_ROOT}/restart

[CHECKPOINT]
MODE = WALLTIME_REGULAR
WALLTIME_INTERVAL = 15
NUM_CHECKPOINT = 2
PROTECT_FREQUENCY = 5

Time Loop Section

The time loop specifies how time progresses for the simulation in the driver. It is not required by the framework, but
may be required by the driver. Most simulations use the time loop section to specify the number and frequency of time
steps for the simulation as opposed to hard coding it into the driver. It is a helpful tool to control the runtime of each
step and the overall simulation. It can also be helpful when looking at a small portion of time in the simulation for
debugging purposes.

MODE - defines the following entries. If mode is REGULAR – START, FINISH and NSTEP are used to generate a
list of times of length NSTEP starting at START and ending at FINISH. If mode is EXPLICIT – VALUES contains the
(whitespace separated) list of times that are are to be modeled.

24 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

[TIME_LOOP]
MODE = REGULAR
START = 0.0
FINISH = 20.0
NSTEP = 5

3.3 Platforms and Platform Configuration

This section will describe key aspects of the platforms that the IPS has been ported to, key locations relevant to the
IPS, and the platform configuration settings in general and specific to the platforms described below.

Important Note - while this documentation is intended to remain up to date, it may not always reflect the current status
of the machines. If you run into problems, check that the information below is accurate by looking at the websites for
the machine. If you are still having problems, contact the framework developers.

3.3.1 Ported Platforms

Each subsection will contain information about the platform in question. If you are porting the IPS to a new platform,
these are the items that you will need to know or files and directories to create in order to port the IPS. You will also
need a platform configuration file (described below). Available queue names are listed with the most common ones in
bold.

The platforms below fall into the following categories:

• general production machines - large production machines on which the majority of runs (particularly production
runs) are made.

• experimental systems - production or shared machines that are being used by a subset of SWIM members for
specific research projects. These systems may also be difficult for others to get accounts.

• formerly used systems - machines that the IPS was ported to but we either do not have time on that machine, it
has been retired by its hosting site, or it is not in wide use anymore.

• single user systems - laptop or desktop machines for testing small problems.

General Production

Cori

Cori is a Cray XC40 managed by NERSC.

• Account: You must have an account at NERSC and be added to the Atom project’s group (atom) to log on and
access the set of physics binaries in the PHYS_BIN.

• Logging on - ssh cori.nersc.gov -l <username>

• Architecture - 2,388 Haswell nodes, 32 cores per node, 128GB memory per node + 9,668 KNL nodes, 68 cores
per node, 96 GB memory

• Environment:

– OS - SUSE Linux Enterprise Server 15 (SLES15)

– Batch scheduler/Resource Manager - Slurm

– Queues - debug, regular, premium, interactive, . . .

3.3. Platforms and Platform Configuration 25

https://docs.nersc.gov/systems/cori/
http://www.nersc.gov/
https://docs.nersc.gov/jobs/policy/

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

– Parallel Launcher (e.g., mpirun) - srun

– Node Allocation policy - exclusive or shared node allocation

• Project directory - /global/project/projectdirs/atom

• Data Tree - /global/common/software/atom/cori/data

• Physics Binaries - /global/common/software/atom/cori/binaries

• WWW Root - /global/project/projectdirs/atom/www/<username>

• WWW Base URL - http://portal.nersc.gov/project/atom/<username>

Retired/Formerly Used Systems

Franklin

Franklin is a Cray XT4 managed by NERSC.

• Account: You must have an account at NERSC and be added to the SWIM project’s group (m876) to log on and
access the set of physics binaries in the PHYS_BIN.

• Logging on - ssh franklin.nersc.gov -l <username>

• Architecture - 9,572 nodes, 4 cores per node, 8 GB memory per node

• Environment:

– OS - Cray Linux Environment (CLE)

– Batch scheduler/Resource Manager - PBS, Moab

– Queues - debug, regular, low, premium, interactive, xfer, iotask, special

– Parallel Launcher (e.g., mpirun) - aprun

– Node Allocation policy - exclusive node allocation

• Project directory - /project/projectdirs/m876/

• Data Tree - /project/projectdirs/m876/data/

• Physics Binaries - /project/projectdirs/m876/phys-bin/phys/

• WWW Root - /project/projectdirs/m876/www/<username>

• WWW Base URL - http://portal.nersc.gov/project/m876/<username>

Hopper

Hopper is a Cray XE6 managed by NERSC.

• Account: You must have an account at NERSC and be added to the SWIM project’s group (m876) to log on and
access the set of physics binaries in the PHYS_BIN.

• Logging on - ssh hopper.nersc.gov -l <username>

• Architecture - 6384 nodes, 24 cores per node, 32 GB memory per node

• Environment:

– OS - Cray Linux Environment (CLE)

– Batch scheduler/Resource Manager - PBS, Moab

26 Chapter 3. User Guides

http://www.nersc.gov/nusers/systems/franklin/
http://www.nersc.gov/
http://www.nersc.gov/users/computational-systems/franklin/running-jobs/queues-and-policies/
http://www.nersc.gov/nusers/systems/hopper/
http://www.nersc.gov/

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

– Queues - debug, regular, low, premium, interactive

– Parallel Launcher (e.g., mpirun) - aprun

– Node Allocation policy - exclusive node allocation

• Project directory - /project/projectdirs/m876/

• Data Tree - /project/projectdirs/m876/data/

• Physics Binaries - /project/projectdirs/m876/phys-bin/phys/

• WWW Root - /project/projectdirs/m876/www/<username>

• WWW Base URL - http://portal.nersc.gov/project/m876/<username>

Stix

Stix is a SMP hosted at PPPL.

• Account: You must have an account at PPPL to access their Beowulf systems.

• Logging on:

1. Log on to the PPPL vpn (https://vpn.pppl.gov)

2. ssh <username>@portal.pppl.gov

3. ssh portalr5

• Architecture - 80 cores, 440 GB memory

• Environment:

– OS - linux

– Batch scheduler/Resource Manager - PBS (Torque), Moab

– Queues - smpq (this is how you specify that you want to run your job on stix)

– Parallel Launcher (e.g., mpirun) - mpiexec (MPICH2)

– Node Allocation policy - node sharing allowed (whole machine looks like one node)

• Project directory - /p/swim1/

• Data Tree - /p/swim1/data/

• Physics Binaries - /p/swim1/phys/

• WWW Root - /p/swim/w3_html/<username>

• WWW Base URL - http://w3.pppl.gov/swim/<username>

Viz/Mhd

Viz/mhd are SMP machines hosted at PPPL. These systems appear not to be online any more.

• Account: You must have an account at PPPL to access their Beowulf systems.

• Logging on:

1. Log on to the PPPL vpn (https://vpn.pppl.gov)

2. ssh <username>@portal.pppl.gov

3.3. Platforms and Platform Configuration 27

http://www.nersc.gov/users/computational-systems/hopper/running-jobs/queues-and-policies/
http://beowulf.pppl.gov/
http://www.pppl.gov/
https://vpn.pppl.gov
http://beowulf.pppl.gov/queues.html
http://beowulf.pppl.gov/
http://www.pppl.gov/
https://vpn.pppl.gov

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

• Architecture - ? cores, ? GB memory

• Environment:

– OS - linux

– Batch scheduler/Resource Manager - PBS (Torque), Moab

– Parallel Launcher (e.g., mpirun) - mpiexec (MPICH2)

– Node Allocation policy - node sharing allowed (whole machine looks like one node)

• Project directory - /p/swim1/

• Data Tree - /p/swim1/data/

• Physics Binaries - /p/swim1/phys/

• WWW Root - /p/swim/w3_html/<username>

• WWW Base URL - http://w3.pppl.gov/swim/<username>

Pingo

Pingo was a Cray XT5 hosted at ARSC.

• Account: You must have an account to log on and use the system.

• Logging on - ?

• Architecture - 432 nodes, 8 cores per node, ? memory per node

• Environment:

– OS - ?

– Batch scheduler/Resource Manager - ?

– Parallel Launcher (e.g., mpirun) - aprun

– Node Allocation policy - exclusive node allocation

• Project directory - ?

• Data Tree - ?

• Physics Binaries - ?

• WWW Root - ?

• WWW Base URL - ?

Jaguar

Jaguar is a Cray XT5 managed by OLCF.

• Account: You must have an account for the OLCF and be added to the SWIM project group for accounting and
files sharing purposes, if we have time on this machine.

• Logging on - ssh jaguar.ornl.gov -l <username>

• Architecture - 13,688 nodes, 12 cores per node, 16 GB memory per node

• Environment:

– OS - Cray Linux Environment (CLE)

28 Chapter 3. User Guides

http://www.arsc.edu/support/news/systemnews/news.xml?system=pingo
http://www.arsc.edu/
http://www.olcf.ornl.gov/computing-resources/jaguar/
http://www.olcf.ornl.gov/

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

– Batch scheduler/Resource Manager - PBS, Moab

– Queues - debug, production

– Parallel Launcher (e.g., mpirun) - aprun

– Node Allocation policy - exclusive node allocation

• Project directory - ?

• Data Tree - ?

• Physics Binaries - ?

• WWW Root - ?

• WWW Base URL - ?

Experimental Systems

Swim

Swim is a SMP hosted by the fusion theory group at ORNL.

• Account: You must have an account at ORNL and be given an account on the machine.

• Logging on - ssh swim.ornl.gov -l <username>

• Architecture - ? cores, ? GB memory

• Environment:

– OS - linux

– Batch scheduler/Resource Manager - None

– Parallel Launcher (e.g., mpirun) - mpirun (OpenMPI)

– Node Allocation policy - node sharing allowed (whole machine looks like one node)

• Project directory - None

• Data Tree - None

• Physics Binaries - None

• WWW Root - None

• WWW Base URL - None

Pacman

Pacman is a linux cluster hosted at ARSC.

• Account: You must have an account to log on and use the system.

• Logging on - ?

• Architecture:

– 88 nodes, 16 cores per node, 64 GB per node

– 44 nodes, 12 cores per node, 32 GB per node

• Environment:

3.3. Platforms and Platform Configuration 29

http://www.nccs.gov/computing-resources/jaguar/running-jobs/scheduling-policy-xt5/
http://www.ornl.gov/sci/fed/Theory/
http://www.arsc.edu/resources/pacman.html
http://www.arsc.edu/

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

– OS - Red Hat Linux 5.6

– Batch scheduler/Resource Manager - Torque (PBS), Moab

– Queues - debug, standard, standard_12, standard_16, bigmem, gpu, background, shared, transfer

– Parallel Launcher (e.g., mpirun) - mpirun (OpenMPI?)

– Node Allocation policy - node sharing allowed

• Project directory - ?

• Data Tree - ?

• Physics Binaries - ?

• WWW Root - ?

• WWW Base URL - ?

Iter

Iter is a linux cluster (?) that is hosted ???.

• Account: You must have an account to log on and use the system.

• Logging on - ?

• Architecture - ? nodes, ? cores per node, ? GB memory per node

• Environment:

– OS - linux

– Batch scheduler/Resource Manager - ?

– Queues - ?

– Parallel Launcher (e.g., mpirun) - mpiexec (MPICH2)

– Node Allocation policy - node sharing allowed

• Project directory - /project/projectdirs/m876/

• Data Tree - /project/projectdirs/m876/data/

• Physics Binaries - /project/projectdirs/m876/phys-bin/phys/

• WWW Root - ?

• WWW Base URL - ?

Odin

Odin is a linux cluster hosted at Indiana University.

• Account: You must have an account to log on and use the system.

• Logging on - ssh odin.cs.indiana.edu -l <username>

• Architecture - 128 nodes, 4 cores per node, ? GB memory per node

• Environment:

– OS - GNU/Linux

30 Chapter 3. User Guides

http://www.arsc.edu/support/news/systemnews/news.xml?system=pacman#1294294578
https://uisapp2.iu.edu/confluence-prd/pages/viewpage.action?pageId=131203559
http://www.soic.indiana.edu/

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

– Batch scheduler/Resource Manager - Slurm, Maui

– Queues - there is only one queue and it does not need to specified in the batchscript

– Parallel Launcher (e.g., mpirun) - mpirun (OpenMPI)

– Node Allocation policy - node sharing allowed

• Project directory - None

• Data Tree - None

• Physics Binaries - None

• WWW Root - None

• WWW Base URL - None

Sif

Sif is a linux cluster hosted at Indiana University.

• Account: You must have an account to log on and use the system.

• Logging on - ssh sif.cs.indiana.edu -l <username>

• Architecture - 8 nodes, 8 cores per node, ? GB memory per node

• Environment:

– OS - GNU/Linux

– Batch scheduler/Resource Manager - Slurm, Maui

– Queues - there is only one queue and it does not need to specified in the batchscript

– Parallel Launcher (e.g., mpirun) - mpirun (OpenMPI)

– Node Allocation policy - node sharing allowed

• Project directory - None

• Data Tree - None

• Physics Binaries - None

• WWW Root - None

• WWW Base URL - None

Single User Systems

The IPS can be run on your laptop or desktop. Many of the items above are not present or relevant in a laptop/desktop
environment. See the next section for a sample platform configuration settings.

3.3.2 Platform Configuration File

The platform configuration file contains platform specific information that the framework needs. Typically it does
not need to be changed for one user to another or one run to another (except for manual specification of alloca-
tion resources). For most of the platforms above, you will find platform configuration files of the form <machine
name>.conf. It is not likely that you will need to change this file, but it is described here for users working on
experimental machines, manual specification of resources, and users who need to port the IPS to a new machine.

3.3. Platforms and Platform Configuration 31

https://uisapp2.iu.edu/confluence-prd/pages/viewpage.action?pageId=131203559
http://www.soic.indiana.edu/

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

HOST = cori
MPIRUN = srun

#######################################
resource detection method
#######################################

NODE_DETECTION = slurm_env # checkjob | qstat | pbs_env | slurm_env

#######################################
node topology description
#######################################

PROCS_PER_NODE = 32
CORES_PER_NODE = 32
SOCKETS_PER_NODE = 1

#######################################
framework setting for node allocation
#######################################
MUST ADHERE TO THE PLATFORM'S CAPABILITIES
* EXCLUSIVE : only one task per node
* SHARED : multiple tasks may share a node
For single node jobs, this can be overridden allowing multiple
tasks per node.

NODE_ALLOCATION_MODE = EXCLUSIVE # SHARED | EXCLUSIVE
USE_ACCURATE_NODES = ON

HOST name of the platform. Used by the portal.

MPIRUN command to launch parallel applications. Used by the task manager to launch parallel tasks on compute
nodes. If you would like to launch a task directly without the parallel launcher (say, on a SMP style machine or
workstation), set this to “eval” – it tells the task manager to directly launch the task as <binary> <args>.

NODE_DETECTION method to use to detect the number of nodes and processes in the allocation. If the value is
“manual,” then the manual allocation description is used. If nothing is specified, all of the methods are attempted
and the first one to succeed will be used. Note, if the allocation detection fails, the framework will abort, killing
the job.

TOTAL_PROCS number of processes in the allocation3.

NODES number of nodes in the allocation3.

PROCS_PER_NODE number of processes per node (ppn) for the framework2.

CORES_PER_NODE number of cores per node1.

SOCKETS_PER_NODE number of sockets per node1.

NODE_ALLOCATION_MODE ‘EXCLUSIVE’ for one task per node, and ‘SHARED’ if more than one task can
share a node1. Simulations, components and tasks can set their node usage allocation policies in the configura-
tion file and on task launch.

A sample platform configuration file for a workstation. It assumes that the workstation:

• does not have a batch scheduler or resource manager

3 Only used if manual allocation is specified, or if no detection mechanism is specified and none of the other mechansims work first. It is the
users responsibility for this value to make sense.

2 Used in manual allocation detection and will override any detected ppn value (if smaller than the machine maximum ppn).
1 This value should not change unless the machine is upgraded to a different architecture or implements different allocation policies.

32 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

• may have multiple cores and sockets

• does not have portal access

• will manually specify the allocation

HOST = workstation
MPIRUN = mpirun # eval

#######################################
resource detection method
#######################################
NODE_DETECTION = manual # checkjob | qstat | pbs_env | slurm_env | manual

#######################################
manual allocation description
#######################################
TOTAL_PROCS = 4
NODES = 1
PROCS_PER_NODE = 4

#######################################
node topology description
#######################################
CORES_PER_NODE = 4
SOCKETS_PER_NODE = 1

#######################################
framework setting for node allocation
#######################################
MUST ADHERE TO THE PLATFORM'S CAPABILITIES
* EXCLUSIVE : only one task per node
* SHARED : multiple tasks may share a node
For single node jobs, this can be overridden allowing multiple
tasks per node.
NODE_ALLOCATION_MODE = SHARED # SHARED | EXCLUSIVE

3.4 Developing Drivers and Components for IPS Simulations

This section is for those who wish to modify and write drivers and components to construct a new simulation scenario.
It is expected that readers are familiar with IPS terminology, the directory structure and have looked at some existing
drivers and components before attempting to modify or create new ones. This guide will describe the elements of a
simulation, how they work together, the structure of drivers and components, IPS services API, and a discussion of
control flow, data flow and fault management.

3.4.1 Elements of a Simulation

When constructing a new simulation scenario, writing a new component or even making small modifications to existing
components and drivers, it is important to consider and understand how the pieces of an IPS simulation work together.
An IPS simulation scenario is specified in the configuration file. This file tells the framework how to set up the output
tree for the data files, which components are needed and where the implementation is located, time loop and checkpoint
parameters, and input and output files for each component and the simulation as a whole are specified. The framework
uses this information to find the pieces of code and data that come together to form the simulation, as well as provide

3.4. Developing Drivers and Components for IPS Simulations 33

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

this information to the components and driver to manage the simulation and execution of tasks1.

The framework provides services that are used by components to perform data, task, resource and configuration man-
agement, and provides an event service for exchanging messages with internal and external entities. While these
services are provided as a single API to component writers, the documentation (and underlying implementation) di-
vides them into groups of methods to perform related actions. Data management services include staging input, output
and plasma state files, changing directories, and saving task restart files, among others. The framework will perform
these actions for the calling component based on the files specified in the configuration file and within the method call
maintaining coherent directory spaces for each component’s work, previous steps, checkpoints and globally accessible
data to insure that name collisions do not corrupt data and that global files are accessed in a well-defined manner2.
Services for task management include methods for component method invocations, or calls, and executable launch on
compute nodes, or task launches. The task management portion of the framework works in conjunction with the IPS
resource manager to execute multiple parallel executables within a single batch allocation, allowing IPS simulations
to efficiently utilize compute resources, as data dependencies allow. The IPS task manager provides blocking and
non-blocking versions of call and launch_task, including a notion of task pools and the ability to wait for the
completion of any or all calls or tasks in a group. These different invocation and launch methods allow a component
writer to manage the control flow and implement data dependencies between components and tasks. This task man-
agement interface hides the resource management, platform specific, task scheduling, and process interactions that
are performed by the framework, allowing component writers to express their simulations and component coupling
more simply. The configuration manager primarily reads the configuration file and instantiates the components for the
simulation so that they can interact over the course of the simulation. It also provides an interface for accessing key
data elements from the configuration file, such as the time loop, handles to components and any component specific
items listed in the configuration file.

3.4.2 Components

There are three classes of components: framework, driver, and general purpose (physics components fall into this
category). In the IPS, each component executes in a separate process (a child of the framework) and implements the
following methods:

init(self, timeStamp=0) This function performs pre-simulation setup activities such as reading in global
configuration parameters, checking configuration parameters, updating input files and internal state. (Compo-
nent configuration parameters are populated before init is ever called.)

step(self, timeStamp=0) This function is the main part of the component. It is responsible for launching
any tasks, and managing the input, output and plasma state during the course of the step.

finalize(self, timeStamp=0) This function is called after the simulation has completed and performs any
clean up that is required by the component. Typically there is nothing to do.

checkpoint(self, timeStamp=0) This function performs a checkpoint for the component. All of the files
marked as restart files in the configuration file are automatically staged to the checkpoint area. If the component
has any internal knowledge or logic, or if there are any additional files that are needed to restart, this should be
done explicitly here.

restart(self, timeStamp=0) This function replaces init when restarting a simulation from a previous
simulation step. It should read in data from the appropriate files and set up the component so that it is ready to
compute the next step.

1 Tasks are the binaries that are launched by components on compute nodes, where as components are Python scripts that manage the data
movements and execution of the tasks (with the help of IPS services). In general, the component is aware of the driver and its existence within a
coupled simulation, and the task does not.

2 The IPS uses an agreed upon file format and associated library to manage global (shared) data for the simulation, called the Plasma State. It
is made up of a set of netCDF files with a defined layout so that codes can access and share the data. At the beginning of each step the component
will get a local copy of the current plasma state, execute based on these values, and then update the plasma state values that it changed to the global
copy. There are data management services to perform these actions, see Data Management API.

34 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

The component writer will use the services API to help perform data, task, configuration and event management
activities to implement these methods.

This document focuses on helping (physics) component and driver writers successfully write new components. It will
take the writer step-by-step through the process of writing basic components.

3.4.3 Writing Components

In this section, we take you through the steps of adding a new component to the IPS landscape. It will cover where to
put source code, scripts, binaries and inputs, how to construct the component, how to add the component to the IPS
build system, and some tips to make this process smoother.

Adding a New Binary

The location of the binary does not technically matter to the framework, as long as the path can be constructed by the
component and the permissions are set properly to launch it when the time comes. There are two recommended ways
to express the location of the binary to the component:

1. For stable and shared binaries, the convention is to put them in the platform’s PHYS_BIN. This way, the
PHYS_BIN is specified in the platform configuration file and the component can access the location of the
binary relative to that location on each machine. See Platforms and Platform Configuration.

2. The location of the binary is specified in the component’s section of the simulation configuration file. This
way, the binary can be specified just before runtime and the component can access it through the framework
services. This convention is typically used during testing, experimentation with new features in the code, or
other circumstances where the binary may not be stable, fully compatible with other components, or ready to be
shared widely.

Data Coupling Preparation

Once you have your binary built properly and available, it is time to work on the data coupling to the other components
in a simulation. This is a component specific task, but it often takes conversation with the other physicists in the group
as to what values need to be communicated and to develop an understanding of how they are used.

When the physics of interest is identified, adapters need to be written to translate IPS-style inputs (from the Plasma
State) to the inputs the binary is expecting, and a similar adapter for the output files.

Create a Component

Now it is time to start writing the component. At this point you should have an idea of how the component will fit into
a coupled simulation and the types of activities that will need to happen during the init, step, and finalize phases of
execution.

1. Create a directory for your component (if you haven’t already). The convention in the IPS repository is to
put component scripts and helpers in ips/components/<port_name>/<component_name>, where
port_name is the “type” of component, and the component_name is the implementation of that “type” of com-
ponent. Often, component_name will contain the name of the code it executes. If there is already a component
directory and existing components, then you may want to make your own directory within the existing compo-
nent’s directory or just add your component in that same directory.

2. Copy the skeleton component (ips/doc/examples/skeleton_comp.py) to the directory you choose
or created. Be sure to name it such that others will easily know what the component does. For example, a
component for TORIC, a code that models radio frequency heating in plasmas, is found in ips/components/
rf/toric/ and called rf_ic_toric_mcmd.py.

3.4. Developing Drivers and Components for IPS Simulations 35

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

3. Edit skeleton. Components should be written such that the inputs, outputs, binaries and other parameters are
specified in the configuration file or appear in predictable locations across platforms. The skeleton contains
an outline, in comments, of the activities that a generic component does in each method invocation. You will
need to fill in the outline with your own calls to the services and any additional activities in the appropriate
places. Take a look at the other example components in the ips/doc/examples/ or ips/components/
for guidance. The following is an outline of the changes that need to be made:

a. Change the name of the class and update the file to use that name every where it says # CHANGE
EXAMPLE TO COMPONENT NAME.

b. Modify init to initialize the input files that are needed for the first step. Update shared files as needed.

c. Modify step to use the appropriate prepare_input and process_output executables. Make sure all shared
files that are changed during the course of the task execution are saved to their proper locations for use by
other components. Make sure that all output files that are needed for the next step are copied to archival
location. If a different task launch mechanism is required, modify as needed. See Task Launch API for
related services.

d. Modify finalize to do any clean up as needed.

e. Modify checkpoint to save all files that are needed to restart from later.

f. Modify restart to set up the component to resume computation from a checkpointed step.

While writing your component, be sure to use try...except blocks3 to catch problems and the services logging
mechanisms to report critical errors, warnings, info and debug messages. It is strongly recommended that you use
exceptions and the services logging capability for debugging and output. Not catching exceptions in the component can
lead to the driver or framework catching them in a weird place and it will likely take a long time to track down where the
problem occurred. The logging mechanism in the IPS provides time stamps of when the event occurred, the component
that produced the message, as well as a nice way to format the message information. These messages are written to
the log file (specified in the configuration file for the simulation) atomically, unlike normal print statements. Absolute
ordering is not guaranteed across different components, but ordering within the same component is guaranteed. See
Logging API for more information on when to use the different logging levels.

At this point, it might be a good idea to start the documentation of the component in ips/doc/
component_guides/. You will find a README file in ips/doc/ that explains how to build and write IPS
documentation, and another in the ips/doc/component_guides/ on what information to include in your com-
ponent documentation.

Testing and Debugging a Component

Now it is time to construct a simulation to test your new component. There are two ways to test a new component. The
first is to have the IPS just run that single component without a driver, by specifying your component as the driver. The
second is to plug it into an existing driver. The former will test only the task launching and data movement capabilities.
The latter can also test the data coupling and call interface to the component. This section will describe how to xstest
your component using an existing driver (including how to add the new component to the driver).

As you can see in the example component, almost everything is specified in the configuration file and read at run-
time. This means that the configuration of components is vitally important to their success or failure. The entries
in the component configuration section are made available to the component automatically, thus a component can
access them by self.<entry_name>. This is useful in many cases, and you can see in the example component that
self.NPROC and self.BIN_PATH are used. Global configuration parameters can also be accessed using services call
get_config_param(<param_name>) (API).

Drivers access components by their port names (as specified in the configuration file). To add a new component to the
driver you will either need to add a new port name or use an existing port name. ips/components/drivers/
dbb/generic_driver.py is a good all-purpose driver that most components should be able to use. If you are

3 Tutorial on exceptions

36 Chapter 3. User Guides

http://docs.python.org/tutorial/errors.html

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

using an existing port name, then the code should just work. It is recommended to go through the driver code to make
sure the component is being used in the expected manner. To add a new port name, you will need to add code to
generic_driver.step():

• get a reference to the port (self.services.get_port(<name of port>))

• call “init” on that component (self.services.call(comp_ref, “init”))

• call “step” on that component (self.services.call(comp_ref, “step”))

• call “finalize” on that component (self.services.call(comp_ref, “finalize”))

The following sections of the configuration file may need to be modified. If you are not adding the component to an
existing simulation, you can copy a configuration file from the examples directory and modify it.

1. Plasma State (Shared Files) Section

You will need to modify this section to include any additional files needed by your component:

Where to put plasma state files as the simulation evolves
STATE_WORK_DIR = ${SIM_ROOT}/work/plasma_state
CURRENT_STATE = ${SIM_NAME}_ps.cdf
PRIOR_STATE = ${SIM_NAME}_psp.cdf
NEXT_STATE = ${SIM_NAME}_psn.cdf
CURRENT_EQDSK = ${SIM_NAME}_ps.geq
CURRENT_CQL = ${SIM_NAME}_ps_CQL.nc
CURRENT_DQL = ${SIM_NAME}_ps_DQL.nc
CURRENT_JSDSK = ${RUN_ID}_ps.jso

What files constitute the plasma state
STATE_FILES1 = ${CURRENT_STATE} ${PRIOR_STATE}

${NEXT_STATE}
STATE_FILES2 = ${STATE_FILES1} ${CURRENT_EQDSK}

${CURRENT_CQL} ${CURRENT_DQL}
STATE_FILES = ${STATE_FILES2} ${CURRENT_JSDSK}

2. Ports Section

You will need to add the component to the ports section so that it can be properly detected by the framework and
driver. An entry for DRIVER must be specified, otherwise the framework will abort. Also, a warning is produced
if there is no INIT component. Note that all components added to the NAMES field must have a corresponding
subsection.

[PORTS]
NAMES = INIT DRIVER MONITOR EPA NB

[[DRIVER]]
IMPLEMENTATION = EPA_IC_FP_NB_DRIVER

[[INIT]]
IMPLEMENTATION = minimal_state_init

[[RF_IC]]
IMPLEMENTATION = model_RF_IC

...

3. Component Description Section

The ports section just defines which components are going to be used in this simulation, and point to the section
where they are described. The component description section is where those definitions take place:

[TSC]
CLASS = epa

(continues on next page)

3.4. Developing Drivers and Components for IPS Simulations 37

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

(continued from previous page)

SUB_CLASS =
NAME = tsc
NPROC = 1
BIN_PATH = /path/to/bin
INPUT_DIR = /path/to/components/epa/tsc
INPUT_FILES = inputa.I09001 sprsina.I09001config_nbi_ITER.dat
OUTPUT_FILES = outputa tsc.cgm inputa log.tsc ${STATE_FILES}
SCRIPT = ${BIN_PATH}/epa_nb_iter.py

The component section starts with a label that matches what is listed as the implementation in the ports section.
These must match or else the framework will not find your component and the simulation will fail before it starts
(or worse, use the wrong implementation!). CLASS and SUBCLASS typically refer to the directory hierarchy and
are sometimes used to identify the location of the source code and input files. Note that NAME must match the
python class name that implements the component. NPROC is the number of processes that the binary needs to
use when launched on compute nodes. If you have pre-built binaries that exist in another location, an additional
entry in the component description section may be a convenient place to put it. INPUT_DIR, INPUT_FILES
and OUTPUT_FILES specify the location and names of the input and output files, respectively. If a subset
of plasma states files is all that is required by the component, they are specified here (STATE_FILES). If the
entry is omitted, all of the plasma state files are used. This prevents the full set of files to be copied to and
from the component’s work directory on every step, saving time and space. Lastly, SCRIPT is the Python script
that contains the component code, specifically the Python class in NAME. Additionally, any component specific
values maybe specified here to control logic or set data values that change often.

4. Time Loop Section

This may need to be modified for your component or the driver that uses your new component. During testing,
a small number of steps is appropriate.

Time loop specification (two modes for now) EXPLICIT | REGULAR
For MODE = REGULAR, the framework uses the variables START, FINISH, and NSTEP
For MODE = EXPLICIT, the framework uses the variable VALUES (space separated
list of time values)
[TIME_LOOP]

MODE = EXPLICIT
VALUES = 75.000 75.025 75.050 75.075 75.100 75.125

Tips

This section contains some useful tips on testing, debugging and documenting your new component.

• General:

– Naming is important. You do not want the name of your component to overlap with another, so make sure
it is unique.

– Be sure to commit all the files and directories that are needed to build and run your component. This means
the executables, Makefiles, component script, helper scripts and input files.

• Testing:

– To test a new component, first run it as the driver component of a simulation all by itself. This will make
sure that the component itself works with the framework.

– The next step is to have a driver call just your new component to make sure it can be discovered and called
by the driver properly.

– The next step is to determine if the component can exchange global data with another component. To do
this run two components in a driver and verify they are exchanging data properly.

38 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

– When testing IPS components and simulations, it may be useful to turn on debugging information in the
IPS and the underlying executables.

– If this is a time stepping simulation, a small number of steps is useful because it will lead to shorter running
times, allowing you to submit the job to a debug or other faster turnaround queue.

• Debugging:

– Add logging messages (services.info(), services.warning(), etc.) to make sure your component does what
you think it does.

– Remove other components from the simulation to figure out which one or which interaction is causing the
problem

– Take many checkpoints around the problem to narrow in on the problem.

– Remove concurrency to see if one component is overwriting another’s data.

• Documentation:

– Document the component code such that another person can understand how it works. It helps if the
structure remains the same as the example component.

– Write a description of what the component does, the inputs it uses, outputs it produces, and what scenarios
and modes it can be used in in the component documentation section.

3.4.4 Writing Drivers

The driver of the simulation manages the control flow and synchronization across components via time stepping or
implicit means, thus orchestrating the simulation. There is only one driver per simulation and it is invoked by the
framework and is responsible for invoking the components that make up the simulation scenario it implements. It is
also responsible for managing data at the simulation level, including checkpoint and restart activities.

Before writing a driver, it is a good idea to have the components already written. Once the components that are to be
used are chosen the data coupling and control flow must be addressed.

In order to couple components, the data that must be exchanged between them and the ordering of updates to the
plasma state must be determined. Once the data dependencies are identified (which components have to run before the
next, and which ones can run at the same time). You can write the body of the driver. Before going through the steps
of writing a driver, review the method invocation API and plan which methods to use during the main time loop.

The framework will invoke the methods of the INIT and DRIVER components over the course of the simulation,
defining the execution of the run:

• init_comp.init() - initialization of initialization component

• init_comp.step() - execution of initialization work

• init_comp.finalize() - cleanup and confirmation of initialization

• driver.init() - any initialization work (typically empty)

• driver.step() - the bulk of the simulation

– get references to the ports

– call init on each port

– get the time loop

– implement logic of time stepping

– during each time step:

3.4. Developing Drivers and Components for IPS Simulations 39

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

* perform pre-step logic that may stage data or determine which components need to run or what pa-
rameters are given to each component

* call step on each port (as appropriate)

* manage global plasma state at the end of each step

* checkpoint components (frequency of checkpoints is controlled by framework)

– call finalize on each component

• driver.finalize() - any clean up activities (typically empty)

It is recommended that you start with the ips/components/drivers/dbb/generic_driver.py and mod-
ify it as needed. You will most likely be changing: how the components are called in the main loop (the generic
driver calls each component in sequence), the pre-step logic phase, and what ports are used. The data management
and checkpointing calls should remain unchanged as their behavior is controlled in the configuration file.

The process for adding a new driver to the IPS is the same as that for the component. See the appropriate sections
above for adding a component.

3.4.5 IPS Services API

The IPS framework contains a set of managers that perform services for the components. A component uses the
services API to access them, thus hiding the complexity of the framework implementation. Below are descriptions of
the individual function calls grouped by type. To call any of these functions in a component replace ServicesProxy
with self.services. The services object is passed to the component upon creation by the framework.

Component Invocation

Component invocation in the IPS means one component is calling another component’s function. This API provides a
mechanism to invoke methods on components through the framework. There are blocking and non-blocking versions,
where the non-blocking versions require a second function to check the status of the call. Note that the wait_call has
an optional argument (block) that changes when and what it returns.

ServicesProxy.call(component_id, method_name, *args, **keywords)
Invoke method method_name on component component_id with optional arguments *args. Return result from
invoking the method.

ServicesProxy.call_nonblocking(component_id, method_name, *args, **keywords)
Invoke method method_name on component component_id with optional arguments *args. Return call_id.

ServicesProxy.wait_call(call_id, block=True)
If block is True, return when the call has completed with the return code from the call. If block is False, raise
ipsExceptions.IncompleteCallException if the call has not completed, and the return value is it
has.

ServicesProxy.wait_call_list(call_id_list, block=True)
Check the status of each of the call in call_id_list. If block is True, return when all calls are finished. If block
is False, raise ipsExceptions.IncompleteCallException if any of the calls have not completed,
otherwise return. The return value is a dictionary of call_ids and return values.

Task Launch

The task launch interface allows components to launch and manage the execution of (parallel) executables. Similar
to the component invocation interface, the behavior of launch_task and the wait_task variants are controlled using the
block keyword argument and different interfaces to wait_task.

40 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

ServicesProxy.launch_task(nproc, working_dir, binary, *args, **keywords)
Launch binary in working_dir on nproc processes. *args are any arguments to be passed to the binary on the
command line. **keywords are any keyword arguments used by the framework to manage how the binary is
launched. Keywords may be the following:

• task_ppn : the processes per node value for this task

• block : specifies that this task will block (or raise an exception) if not enough resources are available to
run immediately. If True, the task will be retried until it runs. If False, an exception is raised indicating
that there are not enough resources, but it is possible to eventually run. (default = True)

• tag : identifier for the portal. May be used to group related tasks.

• logfile : file name for stdout (and stderr) to be redirected to for this task. By default stderr is
redirected to stdout, and stdout is not redirected.

• whole_nodes : if True, the task will be given exclusive access to any nodes it is assigned. If False, the
task may be assigned nodes that other tasks are using or may use.

• whole_sockets : if True, the task will be given exclusive access to any sockets of nodes it is assigned. If
False, the task may be assigned sockets that other tasks are using or may use.

Return task_id if successful. May raise exceptions related to opening the logfile, being unable to obtain enough
resources to launch the task (ipsExceptions.InsufficientResourcesException), bad task
launch request (ipsExceptions.ResourceRequestMismatchException, ipsExceptions.
BadResourceRequestException) or problems executing the command. These exceptions may be used
to retry launching the task as appropriate.

Note: This is a nonblocking function, users must use a version of ServicesProxy.wait_task() to get
result.

ServicesProxy.wait_task(task_id, timeout=-1, delay=1)
Check the status of task task_id. Return the return value of the task when finished successfully. Raise exceptions
if the task is not found, or if there are problems finalizing the task.

ServicesProxy.wait_task_nonblocking(task_id)
Check the status of task task_id. If it has finished, the return value is populated with the actual value, otherwise
None is returned. A KeyError exception may be raised if the task is not found.

ServicesProxy.wait_tasklist(task_id_list, block=True)
Check the status of a list of tasks. If block is True, return a dictionary of return values when all tasks have
completed. If block is False, return a dictionary containing entries for each completed task. Note that the
dictionary may be empty. Raise KeyError exception if task_id not found.

ServicesProxy.kill_task(task_id)
Kill launched task task_id. Return if successful. Raises exceptions if the task or process cannot be found or
killed successfully.

ServicesProxy.kill_all_tasks()
Kill all tasks associated with this component.

The task pool interface is designed for running a group of tasks that are independent of each other and can run
concurrently. The services manage the execution of the tasks efficiently for the component. Users must first create an
empty task pool, then add tasks to it. The tasks are submitted as a group and checked on as a group. This interface is
basically a wrapper around the interface above for convenience.

ServicesProxy.create_task_pool(task_pool_name)
Create an empty pool of tasks with the name task_pool_name. Raise exception if duplicate name.

3.4. Developing Drivers and Components for IPS Simulations 41

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

ServicesProxy.add_task(task_pool_name, task_name, nproc, working_dir, binary, *args, **key-
words)

Add task task_name to task pool task_pool_name. Remaining arguments are the same as in ServicesProxy.
launch_task().

ServicesProxy.submit_tasks(task_pool_name, block=True, use_dask=False, dask_nodes=1,
dask_ppn=None, launch_interval=0.0)

Launch all unfinished tasks in task pool task_pool_name. If block is True, return when all tasks have been
launched. If block is False, return when all tasks that can be launched immediately have been launched.
Return number of tasks submitted.

ServicesProxy.get_finished_tasks(task_pool_name)
Return dictionary of finished tasks and return values in task pool task_pool_name. Raise exception if no active
or finished tasks.

ServicesProxy.remove_task_pool(task_pool_name)
Kill all running tasks, clean up all finished tasks, and delete task pool.

Miscellaneous

The following services do not fit neatly into any of the other categories, but are important to the execution of the
simulation.

ServicesProxy.get_working_dir()
Return the working directory of the calling component.

The structure of the working directory is defined using the configuration parameters CLASS, SUB_CLASS, and
NAME of the component configuration section. The structure of the working directory is:

${SIM_ROOT}/work/$CLASS_${SUB_CLASS}_$NAME_<instance_num>

ServicesProxy.update_time_stamp(new_time_stamp=-1)
Update time stamp on portal.

ServicesProxy.send_portal_event(event_type=’COMPONENT_EVENT’, event_comment=”)
Send event to web portal.

Data Management

The data management services are used by the components to manage the data needed and produced by each step, and
for the driver to manage the overall simulation data. There are methods for component local, and simulation global
files. Fault tolerance services are presented in another section.

Staging of local (non-shared) files:

ServicesProxy.stage_input_files(input_file_list)
Copy component input files to the component working directory (as obtained via a call to ServicesProxy.
get_working_dir()). Input files are assumed to be originally located in the directory variable INPUT_DIR
in the component configuration section.

ServicesProxy.stage_output_files(timeStamp, file_list, keep_old_files=True,
save_plasma_state=True)

Copy associated component output files (from the working directory) to the component simulation results di-
rectory. Output files are prefixed with the configuration parameter OUTPUT_PREFIX. The simulation results
directory has the format:

${SIM_ROOT}/simulation_results/<timeStamp>/components/$CLASS_${SUB_CLASS}_$NAME_$
→˓{SEQ_NUM}

42 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Additionally, plasma state files are archived for debugging purposes:

${SIM_ROOT}/history/plasma_state/<file_name>_$CLASS_${SUB_CLASS}_$NAME_<timeStamp>

Copying errors are not fatal (exception raised).

Staging of global (plasma state) files:

ServicesProxy.stage_state(state_files=None)
Copy current state to work directory.

ServicesProxy.update_state(state_files=None)
Copy local (updated) state to global state. If no state files are specified, component configuration specification
is used. Raise exceptions upon copy.

ServicesProxy.merge_current_state(partial_state_file, logfile=None, merge_binary=None)
Merge partial plasma state with global state. Partial plasma state contains only the values that the component
contributes to the simulation. Raise exceptions on bad merge. Optional logfile will capture stdout from merge.
Optional merge_binary specifies path to executable code to do the merge (default value : “update_state”)

Configuration Parameter Access

These methods access information from the simulation configuration file.

ServicesProxy.get_port(port_name)
Return a reference to the component implementing port port_name.

ServicesProxy.get_config_param(param, silent=False)
Return the value of the configuration parameter param. Raise exception if not found.

ServicesProxy.set_config_param(param, value, target_sim_name=None)
Set configuration parameter param to value. Raise exceptions if the parameter cannot be changed or if there are
problems setting the value.

ServicesProxy.get_time_loop()
Return the list of times as specified in the configuration file.

Logging

The following logging methods can be used to write logging messages to the simulation log file. It is strongly rec-
ommended that these methods are used as opposed to print statements. The logging capability adds a timestamp and
identifies the component that generated the message. The syntax for logging is a simple string or formatted string:

self.services.info('beginning step')
self.services.warning('unable to open log file %s for task %d, will use stdout instead
→˓',

logfile, task_id)

There is no need to include information about the component in the message as the IPS logging interface includes a
time stamp and information about what component sent the message:

2011-06-13 14:17:48,118 drivers_ssfoley_branch_test_driver_1 DEBUG __initialize__
→˓(): <branch_testing.branch_test_driver object at 0xb600d0> branch_testing_
→˓hopper@branch_test_driver@1
2011-06-13 14:17:48,125 drivers_ssfoley_branch_test_driver_1 DEBUG Working
→˓directory /scratch/scratchdirs/ssfoley/rm_dev/branch_testing_hopper/work/drivers_
→˓ssfoley_branch_test_driver_1 does not exist - will attempt creation

(continues on next page)

3.4. Developing Drivers and Components for IPS Simulations 43

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

(continued from previous page)

2011-06-13 14:17:48,129 drivers_ssfoley_branch_test_driver_1 DEBUG Running -
→˓CompID = branch_testing_hopper@branch_test_driver@1
2011-06-13 14:17:48,130 drivers_ssfoley_branch_test_driver_1 DEBUG _init_event_
→˓service(): self.counter = 0 - <branch_testing.branch_test_driver object at 0xb600d0>
2011-06-13 14:17:51,934 drivers_ssfoley_branch_test_driver_1 INFO ('Received
→˓Message ',)
2011-06-13 14:17:51,934 drivers_ssfoley_branch_test_driver_1 DEBUG Calling method
→˓init args = (0,)
2011-06-13 14:17:51,938 drivers_ssfoley_branch_test_driver_1 INFO ('Received
→˓Message ',)
2011-06-13 14:17:51,938 drivers_ssfoley_branch_test_driver_1 DEBUG Calling method
→˓step args = (0,)
2011-06-13 14:17:51,939 drivers_ssfoley_branch_test_driver_1 DEBUG _invoke_
→˓service(): init_task (48, 'hw', 0, True, True, True)
2011-06-13 14:17:51,939 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_driver@1|FRAMEWORK@Framework@0|0)
2011-06-13 14:17:51,952 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_
→˓driver@1|FRAMEWORK@Framework@0|0), response = <messages.ServiceResponseMessage
→˓object at 0xb60ad0>
2011-06-13 14:17:51,954 drivers_ssfoley_branch_test_driver_1 DEBUG Launching
→˓command : aprun -n 48 -N 24 -L 1087,1084 hw
2011-06-13 14:17:51,961 drivers_ssfoley_branch_test_driver_1 DEBUG _invoke_
→˓service(): getTopic ('_IPS_MONITOR',)
2011-06-13 14:17:51,962 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_driver@1|FRAMEWORK@Framework@0|1)
2011-06-13 14:17:51,972 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_
→˓driver@1|FRAMEWORK@Framework@0|1), response = <messages.ServiceResponseMessage
→˓object at 0xb60b90>
2011-06-13 14:17:51,972 drivers_ssfoley_branch_test_driver_1 DEBUG _invoke_
→˓service(): sendEvent ('_IPS_MONITOR', 'PORTAL_EVENT', {'sim_name': 'branch_testing_
→˓hopper', 'portal_data': {'comment': 'task_id = 1 , Tag = None , Target = aprun -n
→˓48 -N 24 -L 1087,1084 hw ', 'code': 'drivers_ssfoley_branch_test_driver', 'ok':
→˓'True', 'eventtype': 'IPS_LAUNCH_TASK', 'state': 'Running', 'walltime': '4.72'}})
2011-06-13 14:17:51,973 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_driver@1|FRAMEWORK@Framework@0|2)
2011-06-13 14:17:51,984 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_
→˓driver@1|FRAMEWORK@Framework@0|2), response = <messages.ServiceResponseMessage
→˓object at 0xb60d10>
2011-06-13 14:17:51,987 drivers_ssfoley_branch_test_driver_1 DEBUG _invoke_
→˓service(): getTopic ('_IPS_MONITOR',)
2011-06-13 14:17:51,988 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_driver@1|FRAMEWORK@Framework@0|3)
2011-06-13 14:17:52,000 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_
→˓driver@1|FRAMEWORK@Framework@0|3), response = <messages.ServiceResponseMessage
→˓object at 0xb60890>
2011-06-13 14:17:52,000 drivers_ssfoley_branch_test_driver_1 DEBUG _invoke_
→˓service(): sendEvent ('_IPS_MONITOR', 'PORTAL_EVENT', {'sim_name': 'branch_testing_
→˓hopper', 'portal_data': {'comment': 'task_id = 1 elapsed time = 0.00 S', 'code':
→˓'drivers_ssfoley_branch_test_driver', 'ok': 'True', 'eventtype': 'IPS_TASK_END',
→˓'state': 'Running', 'walltime': '4.75'}})
2011-06-13 14:17:52,000 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_driver@1|FRAMEWORK@Framework@0|4)
2011-06-13 14:17:52,012 drivers_ssfoley_branch_test_driver_1 DEBUG _get_service_
→˓response(REQUEST|branch_testing_hopper@branch_test_
→˓driver@1|FRAMEWORK@Framework@0|4), response = <messages.ServiceResponseMessage
→˓object at 0xb60a90>

(continues on next page)

44 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

(continued from previous page)

2011-06-13 14:17:52,012 drivers_ssfoley_branch_test_driver_1 DEBUG _invoke_
→˓service(): finish_task (1L, 1)

The table below describes the levels of logging available and when to use each one. These levels are also used to
determine what messages are produced in the log file. The default level is WARNING, thus you will see WARNING,
ERROR and CRITICAL messages in the log file.

Level When it’s used
DE-
BUG

Detailed information, typically of interest only when diagnosing problems.

INFO Confirmation that things are working as expected.
WARN-
ING

An indication that something unexpected happened, or indicative of some problem in the near future
(e.g. “disk space low”). The software is still working as expected.

ER-
ROR

Due to a more serious problem, the software has not been able to perform some function.

CRITI-
CAL

A serious error, indicating that the program itself may be unable to continue running.

For more information about the logging module and how to used it, see Logging Tutorial.

ServicesProxy.log(*args)
Wrapper for ServicesProxy.info().

ServicesProxy.debug(*args)
Produce debugging message in simulation log file. Raise exception for bad formatting.

ServicesProxy.info(*args)
Produce informational message in simulation log file. Raise exception for bad formatting.

ServicesProxy.warning(*args)
Produce warning message in simulation log file. Raise exception for bad formatting.

ServicesProxy.error(*args)
Produce error message in simulation log file. Raise exception for bad formatting.

ServicesProxy.exception(*args)
Produce exception message in simulation log file. Raise exception for bad formatting.

ServicesProxy.critical(*args)
Produce critical message in simulation log file. Raise exception for bad formatting.

Fault Tolerance

The IPS provides services to checkpoint and restart a coupled simulation by calling the checkpoint and restart methods
of each component and certain settings in the configuration file. The driver can call checkpoint_components, which
will invoke the checkpoint method on each component associated with the simulation. The component’s checkpoint
method uses save_restart_files to save files needed by the component to restart from the same point in the simulation.
When the simulation is in restart mode, the restart method of the component is called to initialize the component,
instead of the init method. The restart component method uses the get_restart_files method to stage in inputs for
continuing the simulation.

ServicesProxy.save_restart_files(timeStamp, file_list)
Copy files needed for component restart to the restart directory:

${SIM_ROOT}/restart/$timestamp/components/$CLASS_${SUB_CLASS}_$NAME

3.4. Developing Drivers and Components for IPS Simulations 45

http://docs.python.org/howto/logging.html#logging-basic-tutorial

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Copying errors are not fatal (exception raised).

ServicesProxy.checkpoint_components(comp_id_list, time_stamp, Force=False, Protect=False)
Selectively checkpoint components in comp_id_list based on the configuration section CHECKPOINT. If Force
is True, the checkpoint will be taken even if the conditions for taking the checkpoint are not met. If Protect is
True, then the data from the checkpoint is protected from clean up. Force and Protect are optional and default
to False.

The CHECKPOINT_MODE option controls determines if the components checkpoint methods are invoked.

Possible MODE options are:

ALL: Checkpint everytime the call is made (equivalent to always setting Force =True)

WALLTIME_REGULAR: checkpoints are saved upon invocation of the service call
checkpoint_components(), when a time interval greater than, or equal to, the value of the
configuration parameter WALLTIME_INTERVAL had passed since the last checkpoint. A check-
point is assumed to have happened (but not actually stored) when the simulation starts. Calls to
checkpoint_components() before WALLTIME_INTERVAL seconds have passed since the last
successful checkpoint result in a NOOP.

WALLTIME_EXPLICIT: checkpoints are saved when the simulation wall clock time exceeds one of the
(ordered) list of time values (in seconds) specified in the variable WALLTIME_VALUES. Let [t_0, t_1, . . . ,
t_n] be the list of wall clock time values specified in the configuration parameter WALLTIME_VALUES.
Then checkpoint(T) = True if T >= t_j, for some j in [0,n] and there is no other time T_1, with T > T_1 >=
T_j such that checkpoint(T_1) = True. If the test fails, the call results in a NOOP.

PHYSTIME_REGULAR: checkpoints are saved at regularly spaced “physics time” intervals, specified in the
configuration parameter PHYSTIME_INTERVAL. Let PHYSTIME_INTERVAL = PTI, and the physics
time stamp argument in the call to checkpoint_components() be pts_i, with i = 0, 1, 2, . . . Then check-
point(pts_i) = True if pts_i >= n PTI , for some n in 1, 2, 3, . . . and pts_i - pts_prev >= PTI, where
checkpoint(pts_prev) = True and pts_prev = max (pts_0, pts_1, ..pts_i-1). If the test fails, the call results
in a NOOP.

PHYSTIME_EXPLICIT: checkpoints are saved when the physics time equals or exceeds one of the (ordered)
list of physics time values (in seconds) specified in the variable PHYSTIME_VALUES. Let [pt_0, pt_1,
. . . , pt_n] be the list of physics time values specified in the configuration parameter PHYSTIME_VALUES.
Then checkpoint(pt) = True if pt >= pt_j, for some j in [0,n] and there is no other physics time pt_k, with
pt > pt_k >= pt_j such that checkpoint(pt_k) = True. If the test fails, the call results in a NOOP.

The configuration parameter NUM_CHECKPOINT controls how many checkpoints to keep on disk. Check-
points are deleted in a FIFO manner, based on their creation time. Possible values of NUM_CHECKPOINT
are:

• NUM_CHECKPOINT = n, with n > 0 –> Keep the most recent n checkpoints

• NUM_CHECKPOINT = 0 –> No checkpoints are made/kept (except when Force = True)

• NUM_CHECKPOINT < 0 –> Keep ALL checkpoints

Checkpoints are saved in the directory ${SIM_ROOT}/restart

ServicesProxy.get_restart_files(restart_root, timeStamp, file_list)
Copy files needed for component restart from the restart directory:

<restart_root>/restart/<timeStamp>/components/$CLASS_${SUB_CLASS}_$NAME_${SEQ_NUM}

to the component’s work directory.

Copying errors are not fatal (exception raised).

46 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Event Service

The event service interface is used to implement the web portal connection, as well as for components to communicate
asynchronously.

ServicesProxy.publish(topicName, eventName, eventBody)
Publish event consisting of eventName and eventBody to topic topicName to the IPS event service.

ServicesProxy.subscribe(topicName, callback)
Subscribe to topic topicName on the IPS event service and register callback as the method to be invoked whem
an event is published to that topic.

ServicesProxy.unsubscribe(topicName)
Remove subscription to topic topicName.

ServicesProxy.process_events()
Poll for events on subscribed topics.

3.5 Create a component package

This is an example creating a hello world component installable package. This is also an example of using MODULE
instead of SCRIPT in the component configuration section.

The examples will be a simple hello world with one driver and one worker. The only requirement of the package is
ipsframework and we are using the specific version v0.2.0. It can be simply installed with

python -m pip install git+https://github.com/HPC-SimTools/IPS-framework.git@v0.2.0

To create this project locally, create the following file structure

helloworld
helloworld

__init__.py
hello_driver.py
hello_worker.py

setup.py

The file __init__.py is just empty but turns the helloworld folder into a python module.

A simple setup.py would be

#!/usr/bin/env python3
from setuptools import setup, find_packages

setup(
name="helloworld",
version="1.0.0",
install_requires=["ipsframework==0.2.0"],
packages=find_packages(),

)

The hello_driver.py in the most simplest form would be

from ipsframework import Component

class hello_driver(Component):
(continues on next page)

3.5. Create a component package 47

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

(continued from previous page)

def __init__(self, services, config):
super().__init__(services, config)
print('Created %s' % (self.__class__))

def step(self, timestamp=0.0):
print('hello_driver: beginning step call')
worker_comp = self.services.get_port('WORKER')
self.services.call(worker_comp, 'step', 0.0)
print('hello_driver: finished step call')

And the hello_worker.py is

from ipsframework import Component

class hello_worker(Component):
def __init__(self, services, config):

super().__init__(services, config)
print('Created %s' % (self.__class__))

def step(self, timestamp=0.0):
print('Hello from hello_worker')

This helloworld package can be installed with

python setup.py install

Or to install it in develop mode with

python setup.py develop

With the components installed as a package you can reference them by MODULE instead of providing the full path with
SCRIPT. So to use the hello_driver you do MODULE = helloworld.hello_driver, and for hello_worker you
can do MODULE = helloworld.hello_worker.

A simple config to run this is, helloworld.config

SIM_NAME = helloworld
SIM_ROOT = $PWD
LOG_FILE = log
LOG_LEVEL = INFO
SIMULATION_MODE = NORMAL

[PORTS]
NAMES = DRIVER WORKER
[[DRIVER]]

IMPLEMENTATION = hello_world_driver

[[WORKER]]
IMPLEMENTATION = hello_world

[hello_world_driver]
CLASS = driver
SUB_CLASS =
NAME = hello_driver
NPROC = 1
BIN_PATH =

(continues on next page)

48 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

(continued from previous page)

INPUT_FILES =
OUTPUT_FILES =
SCRIPT =
MODULE = helloworld.hello_driver

[hello_world]
CLASS = workers
SUB_CLASS =
NAME = hello_worker
NPROC = 1
BIN_PATH =
INPUT_FILES =
OUTPUT_FILES =
SCRIPT =
MODULE = helloworld.hello_worker

And you need a platform file, platform.conf

MPIRUN = eval
NODE_DETECTION = manual
CORES_PER_NODE = 1
SOCKETS_PER_NODE = 1
NODE_ALLOCATION_MODE = shared
HOST =

So after installing ipsframework and helloworld you can run it with

ips.py --config=helloworld.config --platform=platform.conf

and you should get the output

Created <class 'helloworld.hello_driver.hello_driver'>
Created <class 'helloworld.hello_worker.hello_worker'>
hello_driver: beginning step call
Hello from hello_worker
hello_driver: finished step call

3.5.1 Using PYTHONPATH instead of installing the package

If you don’t want to install the package, this can still work if you set your PYTHONPATH correctly. In this case you
don’t need the setup.py either.

You can run the helloworld example from within the directory without installing by

PYTHONPATH=$PWD ips.py --config=helloworld.config --platform=platform.conf

3.6 Migrating from old IPS v0.1.0 to new IPS

This is a guide on converting from the old (up to July 2020) way of doing things to the new way.

The old version of IPS can be found at https://github.com/HPC-SimTools/IPS-framework/releases/tag/v0.1.0 and you
can check it out by

3.6. Migrating from old IPS v0.1.0 to new IPS 49

https://github.com/HPC-SimTools/IPS-framework/releases/tag/v0.1.0

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

git clone -b v0.1.0 https://github.com/HPC-SimTools/IPS-framework.git

IPS was originally run in a mode where either it was install into a directory with cmake or run from the source directory.
The PYTHONPATH and PATH was set to point to the framework/src directory. Thing where imported directly from
the modules.

Thing have changed, the package install is now managed with python setuptools and the IPS framework is install as a
package called ipsframework, see Building and Setting up Your Environment. The ips.py executable is also installed
in you current PATH. This means that you no longer need to set PYTHONPATH or PATH when the IPS framework is
installed. This required a rearrangement of the source code.

Also with this change in the way the package is install there are required code changes need to use it. The main one
is that since this is now a package everything must be imported from ipsframework, so when writing components
you can no longer do from component import Component and must do from ipsframework import
Component. Similarly if importing the framework directly you can not do from ips import Framework and
now must do from ipsframework import Framework.

Additionally the following changes have been made

• These unused options have been remove from ips.py (--component, --clone, --sim_name,
--create-runspace, --run-setup, --run, --all)

• A new option for components ports now allows you to specify a MODULE instead of a SCRIPT, this allows
easy use of component that have been installed in the python environment.

These API have been deprecated for a long time and have been removed, you should update you code:

class removed API new API
ConfigurationManager getPort() get_port()
ServicesProxy getGlobalConfigParameter() get_config_param()
ServicesProxy getPort() get_port()
ServicesProxy getTimeLoop() get_time_loop()
ServicesProxy merge_current_plasma_state() merge_current_state()
ServicesProxy stage_plasma_state() stage_state()
ServicesProxy stageCurrentPlasmaState() stage_state()
ServicesProxy stageInputFiles() stage_input_files()
ServicesProxy stageOutputFiles() stage_output_files()
ServicesProxy update_plasma_state() update_state()
ServicesProxy updatePlasmaState() update_state()
ServicesProxy updateTimeStamp() update_time_stamp()

These simulation configuration fields have been deprecated for a long time and now have been remove, you should be
update.

deprecated field new field
PLASMA_STATE_FILES STATE_FILES
PLASMA_STATE_WORK_DIR STATE_WORK_DIR

The RUS (Resource Usage Simulator) has not been updated to python 3 or for the changes in IPS and will not function
in it current state.

50 Chapter 3. User Guides

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

3.7 Installing IPS on NERSC

NERSC recommends the use of anaconda environments to mange python installs, see Brief introduction to Python at
NERSC.

3.7.1 Creating you own conda environment

This guide will go through creating a conda environment on NERSC installing the IPS Framework using Option 2:
Module + source activate

First, you need to load the python module, then create and activate a new conda environment. This will create the
conda environment in your home directory

module load python
conda create --name my_ips_env python=3.8 # or any version of python >=3.6
source activate my_ips_env

Next, get download the IPS Framework and install it into the conda environment

git clone https://github.com/HPC-SimTools/IPS-framework.git
cd IPS-framework
python -m pip install .

To leave your environment

conda deactivate

The example below show how to select the newly create conda environment to run use, see Running Python in a batch
job

#!/bin/bash
#SBATCH --constraint=haswell
#SBATCH --nodes=1
#SBATCH --time=5

module load python
source activate my_ips_env
ips.py --config=simulation.config --platform=platform.conf

3.7.2 Creating a shareable environment on /global/common/software

Creating an conda environment on /global/common/software is the recommend way to have one environment shared
between many uses, this is covered by Option 4a: Install your own Python without containers. There may also be
performance benefits to running from this location instead of your home directory.

Following the instruction we do

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh -b -p /global/common/software/myproject/env
source /global/common/software/myproject/env/bin/activate

Then install IPS into the environment, from within the IPS-framework source directory:

python setup.py install

3.7. Installing IPS on NERSC 51

https://docs.nersc.gov/development/languages/python/overview/
https://docs.nersc.gov/development/languages/python/overview/
https://docs.nersc.gov/development/languages/python/nersc-python/#option-2-module-source-activate
https://docs.nersc.gov/development/languages/python/nersc-python/#option-2-module-source-activate
https://docs.nersc.gov/development/languages/python/overview/#running-python-in-a-batch-job
https://docs.nersc.gov/development/languages/python/overview/#running-python-in-a-batch-job
https://docs.nersc.gov/development/languages/python/nersc-python/#option-4a-install-your-own-python-without-containers

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

The example below show how to select the newly create conda environment to run use, see Running Python in a batch
job

#!/bin/bash
#SBATCH --constraint=haswell
#SBATCH --nodes=1
#SBATCH --time=5

source /global/common/software/myproject/env/bin/activate
ips.py --config=simulation.config --platform=platform.conf

52 Chapter 3. User Guides

https://docs.nersc.gov/development/languages/python/overview/#running-python-in-a-batch-job
https://docs.nersc.gov/development/languages/python/overview/#running-python-in-a-batch-job

CHAPTER 4

Code Listings

4.1 IPS

local version The Integrated Plasma Simulator (IPS) Framework. This framework enables loose, file-based coupling
of certain class of nuclear fusion simulation codes.

For further design information see

• Wael Elwasif, David E. Bernholdt, Aniruddha G. Shet, Samantha S. Foley, Randall Bramley, Donald B. Batch-
elor, and Lee A. Berry, The Design and Implementation of the SWIM Integrated Plasma Simulator, in The
18th Euromirco International Conference on Parallel, Distributed and Network - Based Computing (PDP 2010),
2010.

• Samantha S. Foley, Wael R. Elwasif, David E. Bernholdt, Aniruddha G. Shet, and Randall Bramley, Extending
the Concept of Component Interfaces: Experience with the Integrated Plasma Simulator, in Component - Based
High - Performance Computing (CBHPC) 2009, 2009, (extended abstract).

• D Batchelor, G Alba, E D’Azevedo, G Bateman, DE Bernholdt, L Berry, P Bonoli, R Bramley, J Breslau, M
Chance, J Chen, M Choi, W Elwasif, S Foley, G Fu, R Harvey, E Jaeger, S Jardin, T Jenkins, D Keyes, S Klasky,
S Kruger, L Ku, V Lynch, D McCune, J Ramos, D Schissel, D Schnack, and J Wright, Advances in Simulation
of Wave Interactions with Extended MHD Phenomena, in Horst Simon, editor, SciDAC 2009, 14-18 June 2009,
San Diego, California, USA, volume 180 of Journal of Physics: Conference Series, page 012054, Institute of
Physics, 2009, 6pp.

• Samantha S. Foley, Wael R. Elwasif, Aniruddha G. Shet, David E. Bernholdt, and Randall Bramley, Incorporat-
ing Concurrent Component Execution in Loosely Coupled Integrated Fusion Plasma Simulation, in Component-
Based High-Performance Computing (CBHPC) 2008, 2008, (extended abstract).

• D. Batchelor, C. Alba, G. Bateman, D. Bernholdt, L. Berry, P. Bonoli, R. Bramley, J. Breslau, M. Chance, J.
Chen, M. Choi, W. Elwasif, G. Fu, R. Harvey, E. Jaeger, S. Jardin, T. Jenkins, D. Keyes, S. Klasky, S. Kruger,
L. Ku, V. Lynch, D. McCune, J. Ramos, D. Schissel, D. Schnack, and J. Wright, Simulation of Wave Interations
with MHD, in Rick Stevens, editor, SciDAC 2008, 14-17 July 2008, Washington, USA, volume 125 of Journal
of Physics: Conference Series, page 012039, Institute of Physics, 2008.

• Wael R. Elwasif, David E. Bernholdt, Lee A. Berry, and Don B. Batchelor, Component Framework for Coupled
Integrated Fusion Plasma Simulation, in HPC-GECO/CompFrame 2007, 21-22 October, Montreal, Quebec,

53

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Canada, 2007.

Authors Wael R. Elwasif, Samantha Foley, Aniruddha G. Shet

Organization Center for Simulation of RF Wave Interactions with Magnetohydrodynamics

4.2 Framework

class ipsframework.ips.Framework(config_file_list, log_file_name, platform_file_name=None,
debug=False, verbose_debug=False, cmd_nodes=0,
cmd_ppn=0)

critical(*args)
Produce critical message in simulation log file. Raise exception for bad formatting.

debug(*args)
Produce debugging message in simulation log file. Raise exception for bad formatting.

error(*args)
Produce error message in simulation log file. Raise exception for bad formatting.

exception(*args)
Produce exception message in simulation log file. Raise exception for bad formatting.

get_inq()

Return handle to the Framework’s input queue object (multiprocessing.Queue)

info(*args)
Produce informational message in simulation log file. Raise exception for bad formatting.

log(*args)
Wrapper for Framework.info().

register_service_handler(service_list, handler)
Register a call back method to handle a list of framework service invocations.

• handler: a Python callable object that takes a messages.ServiceRequestMessage.

• service_list: a list of service names to call handler when invoked by components. The service
name must match the target_method parameter in messages.ServiceRequestMessage.

run()
Run the communication outer loop of the framework.

This method implements the core communication and message dispatch functionality of the framework.
The main phases of execution for the framework are:

1. Invoke the init method on all framework-attached components, blocking pending method call ter-
mination.

2. Generate method invocation messages for the remaining public method in the framework-centric com-
ponents (i.e. step and finalize).

3. Generate a queue of method invocation messages for all public framework accessible components in
the simulations being run. framework-accessible components are made up of the Init component (if is
exists), and the Driver component. The generated messages invoke the public methods init, step,
and finalize.

4. Dispatch method invocations for each framework-centric component and physics simulation in order.

54 Chapter 4. Code Listings

http://docs.python.org/library/multiprocessing.html

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

Exceptions that propagate to this method from the managed simulations causes the framework to abort any
pending method invocation for the source simulation. Exceptions from framework-centeric component
aborts further invocations to that component.

When all method invocations have been dispatched (or aborted), Framework.terminate_sim() is
called to trigger normal termination of all component processes.

send_terminate_msg(sim_name, status=0)
Invoke terminate(status) on components in a simulation

This method remotely invokes the method C{terminate()} on all componnets in the IPS simulation
sim_name.

terminate_all_sims(status=0)
Terminate all active component instances.

This method remotely invokes the method C{terminate()} on all componnets in the IPS simulation.

warning(*args)
Produce warning message in simulation log file. Raise exception for bad formatting.

4.3 Data Manager

class ipsframework.dataManager.DataManager(fwk)
The data manager facilitates the movement and exchange of data files for the simulation.

merge_current_plasma_state(msg)
Merge partial plasma state file with global master. Newly updated plasma state copied to caller’s workdir.
Exception raised on copy error.

msg.args:

0. partial_state_file

1. target_state_file

2. log_file: stdout for merge process if not None

process_service_request(msg)
Invokes the appropriate public data manager method for the component specified in msg. Return method’s
return value.

stage_state(msg)
Copy plasma state files from source dir to target dir. Return 0. Exception raised on copy error.

msg.args:

0. state_files

1. source_dir

2. target_dir

update_state(msg)
Copy plasma state files from source dir to target dir. Return 0. Exception raised on copy error.

msg.args:

0. state_files

1. source_dir

2. target_dir

4.3. Data Manager 55

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

4.4 Task Manager

class ipsframework.taskManager.TaskManager(fwk)
The task manager is responsible for facilitating component method invocations, and the launching of tasks.

build_launch_cmd(nproc, binary, cmd_args, working_dir, ppn, max_ppn, nodes, accurateNodes,
partial_nodes, task_id, core_list=”)

Construct task launch command to be executed by the component.

• nproc - number of processes to use

• binary - binary to launch

• cmd_args - additional command line arguments for the binary

• working_dir - full path to where the executable will be launched

• ppn - processes per node value to use

• max_ppn - maximum possible ppn for this allocation

• nodes - comma separated list of node ids

• accurateNodes - if True, launch on nodes in nodes, otherwise the parallel launcher determines the
process placement

• partial_nodes - if True and accurateNodes and task_launch_cmd == ‘mpirun’, a host file is cre-
ated specifying the exact placement of processes on cores.

• core_list - used for creating host file with process to core mappings

finish_task(finish_task_msg)
Cleanup after a task launched by a component terminates

finish_task_msg is expected to be of type messages.ServiceRequestMessage

Message args:

0. task_id: task id of finished task

1. task_data: return code of task

get_call_id()
Return a new call id

get_task_id()
Return a new task id

init_call(init_call_msg, manage_return=True)
Creates and sends a messages.MethodInvokeMessage from the calling component to the target
component. If manage_return is True, a record is added to outstanding_calls. Return call id.

Message args:

0. method_name

1. + arguments to be passed on as method arguments.

init_task(init_task_msg)
Allocate resources needed for a new task and build the task launch command using the bi-
nary and arguments provided by the requesting component. Return launch command to com-
ponent via messages.ServiceResponseMessage. Raise exception if task can not be
launched at this time (ipsExceptions.BadResourceRequestException, ipsExceptions.
InsufficientResourcesException).

56 Chapter 4. Code Listings

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

init_task_msg is expected to be of type messages.ServiceRequestMessage

Message args:

0. nproc: number of processes the task needs

1. binary: full path to the executable to launch

SIMYAN: added this to deal with the component directory change 2. working_dir: full path to directory
where the task will be launched

3. tppn: processes per node for this task. (0 indicates that the default ppn is used.)

4. block: whether or not to wait until the task can be launched.

5. wnodes: True for whole node allocation, False otherwise.

6. wsocks: True for whole socket allocation, False otherwise.

7. + cmd_args: any arguments for the executable

init_task_pool(init_task_msg)
Allocate resources needed for a new task and build the task launch command using the binary and argu-
ments provided by the requesting component.

init_task_msg is expected to be of type messages.ServiceRequestMessage

Message args:

0. task_dict: dictionary of task names and objects

initialize(data_mgr, resource_mgr, config_mgr)
Initialize references to other managers and key values from configuration manager.

printCurrTaskTable()
Prints the task table pretty-like.

process_service_request(msg)
Invokes the appropriate public data manager method for the component specified in msg. Return method’s
return value.

return_call(response_msg)
Handle the response message generated by a component in response to a method invocation on that com-
ponent.

reponse_msg is expected to be of type messages.MethodResultMessage

wait_call(wait_msg)
Determine if the call has finished. If finished, return any data or errors. If not finished raise the appropriate
blocking or nonblocking exception and try again later.

wait_msg is expected to be of type messages.ServiceRequestMessage

Message args:

0. call_id: call id for which to wait

1. blocking: determines the wait is blocking or not

4.5 Resource Manager

class ipsframework.resourceManager.ResourceManager(fwk)
The resource manager is responsible for detecting the resources allocated to the framework, allocating resources
to task requests, and maintaining the associated bookkeeping.

4.5. Resource Manager 57

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

add_nodes(listOfNodes)
Add node entries to self.nodes. Typically used by initialize() to initialize self.nodes. May
be used to add nodes to a dynamic allocation in the future.

listOfNodes is a list of tuples (node name, cores). self.nodes is a dictionary where the keys are the
node names and the values are node_structure.Node structures.

Return total number of cores.

begin_RM_report()
Print header information for resource usage reporting file.

check_core_cap(nproc, ppn)
Determine if it is currently possible to allocate nproc processes with a ppn of ppn without further restric-
tions.. Return True and list of nodes to use if successful. Return False and empty list if there are not
enough available resources at this time, but it is possible to eventually satisfy the request. Exception raised
if the request can never be fulfilled.

check_whole_node_cap(nproc, ppn)
Determine if it is currently possible to allocate nproc processes with a ppn of ppn and whole nodes. Return
True and list of nodes to use if successful. Return False and empty list if there are not enough available
resources at this time, but it is possible to eventually satisfy the request. Exception raised if the request
can never be fulfilled.

check_whole_sock_cap(nproc, ppn)
Determine if it is currently possible to allocate nproc processes with a ppn of ppn and whole sockets.
Return True and list of nodes to use if successful. Return False and empty list if there are not enough
available resources at this time, but it is possible to eventually satisfy the request. Exception raised if the
request can never be fulfilled.

get_allocation(comp_id, nproc, task_id, whole_nodes, whole_socks, task_ppn=0)
Traverse available nodes to return:

If whole_nodes is True:

• shared_nodes: False

• nodes: list of node names

• ppn: processes per node for launching the task

• max_ppn: processes that can be launched

• accurateNodes: True if nodes uses the actual names of the nodes, False otherwise.

If whole_nodes is False:

• shared_nodes: True

• nodes: list of node names

• node_file_entries: list of (node, corelist) tuples, where corelist is a list of core names. Core
names are integers from 0 to n-1 where n is the number of cores on a node.

• ppn: processes per node for launching the task

• max_ppn: processes that can be launched

• accurateNodes: True if nodes uses the actual names of the nodes, False otherwise.

Aguments:

• nproc: the number of requested processes (int)

• comp_id: component identifier, must be unique with respect to the framework (string)

58 Chapter 4. Code Listings

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

• task_id: task identifier from TM (int)

• method: name of method (string)

• task_ppn: ppn for this task (optional) (int)

initialize(dataMngr, taskMngr, configMngr, cmd_nodes=0, cmd_ppn=0)
Initialize resource management structures, references to other managers (dataMngr, taskMngr, configM-
ngr).

Resource information comes from the following in order of priority:

• command line specification (cmd_nodes, cmd_ppn)

• detection using parameters from platform config file

• manual settings from platform config file

The second two sources are obtained through resourceHelper.getResourceList().

printRMState()
Print the node tree to stdout.

process_service_request(msg)

release_allocation(task_id, status)
Set resources allocated to task task_id to available. status is not used, but may be used to correlate resource
failures to task failures and implement task relaunch strategies.

report_RM_status(notes=”)
Print current RM status to the reporting_file (“resource_usage”) Entries consist of:

• time in seconds since beginning of time (__init__ of RM)

• # cores that are available

• # cores that are allocated

• % allocated cores

• # processes launched by task

• % cores used by processes

• notes (a description of the event that changed the resource usage)

sendEvent(eventName, info)
wrapper for constructing and publishing EM events

class ipsframework.node_structure.Node(name, socks, cores, p)
Models a node in the allocation.

• name: name of node, typically actual name from resource detection phase.

• task_ids, owners: identifiers for the tasks and components that are currently using the node.

• allocated, available: list of sockets that have cores allocated and available. A socket may appear in both
lists if it is only partially allocated.

• sockets: list of sockets belonging to this node

• avail_cores: number of cores that are currently available.

• total_cores: total number of cores that can be allocated on this node.

• status: indicates if the node is ‘UP’ or ‘DOWN’. Currently not used, all nodes are considered functional..

4.5. Resource Manager 59

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

allocate(whole_nodes, whole_sockets, tid, o, procs)
Mark procs number of cores as allocated subject to the values of whole_nodes and whole_sockets. Return
the number of cores allocated and their corresponding slots, a list of strings of the form:

<socket name>:<core name>

print_sockets(fname=”)
Pretty print of state of sockets.

release(tid, o)
Mark cores used by task tid and component o as available. Return the number of cores released.

class ipsframework.node_structure.Socket(name, cps, coreids=[])
Models a socket in a node.

• name: identifier for the socket

• task_ids, owners: identifiers for the tasks and components that are currently using the socket.

• allocated, available: lists of cores that are allocated and available.

• cores: list of Core objects belonging to this socket

• avail_cores: number of cores that are currently available.

• total_cores: total number of cores that can be allocated on this socket.

allocate(whole, tid, o, num_procs)
Mark num_procs cores as allocated subject to the value of whole. Return a list of strings of the form:

<socket name>:<core name>

print_cores(fname=”)
Pretty print of state of cores.

release(tid)
Mark cores that are allocated to task tid as available. Return number of cores set to available.

class ipsframework.node_structure.Core(name)
Models a core of a socket.

• name: name of core

• is_available: boolean value indicating the availability of the core.

• task_id, owner: identifiers of the task and component using the core.

allocate(tid, o)
Mark core as allocated.

release()
Mark core as available.

The Resource Helper file contains all of the code needed to figure out what host we are on and what resources we
have. Taking this out of the resource manager will allow us to test it independent of the IPS.

ipsframework.resourceHelper.getResourceList(services, host, partial_nodes=False)
Using the host information, the resources are detected. Return list of (<node name>, <processes per node>),
cores per node, sockets per node, processes per node, and True if the node names are accurate, False other-
wise.

ipsframework.resourceHelper.get_checkjob_info()

ipsframework.resourceHelper.get_pbs_info()
Access info about allocation from PBS environment variables:

60 Chapter 4. Code Listings

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

PBS_NNODES PBS_NODEFILE

ipsframework.resourceHelper.get_qstat_jobinfo()
Use qstat -f $PBS_JOBID to get the number of nodes and ppn of the allocation. Typically works on PBS
systems.

ipsframework.resourceHelper.get_qstat_jobinfo2()
A second way to use qstat -f $PBS_JOBID to get the number of nodes and ppn of the allocation. Typically
works on PBS systems.

ipsframework.resourceHelper.get_slurm_info()
Access environment variables set by Slurm to get the node names, tasks per node and number of processes.

SLURM_NODELIST SLURM_TASKS_PER_NODE or SLURM_JOB_TASKS_PER_NODE
SLURM_NPROC

ipsframework.resourceHelper.manual_detection(services)
Use values listed in platform configuration file.

4.6 Component

class ipsframework.component.Component(services, config)
Base class for all IPS components. Common set up, connection and invocation actions are implemented here.

checkpoint(timestamp=0.0, **keywords)
Produce some default debugging information before the rest of the code is executed.

finalize(timestamp=0.0, **keywords)
Produce some default debugging information before the rest of the code is executed.

init(timestamp=0.0, **keywords)
Produce some default debugging information before the rest of the code is executed.

restart(timestamp=0.0, **keywords)
Produce some default debugging information before the rest of the code is executed.

step(timestamp=0.0, **keywords)
Produce some default debugging information before the rest of the code is executed.

terminate(status)
Clean up services and call sys_exit.

4.7 Configuration Manager

class ipsframework.configurationManager.ConfigurationManager(fwk, con-
fig_file_list, plat-
form_file_name)

The configuration manager is responsible for paring the simulation and platform configuration files, creating the
framework and simulation components, as well as providing an interface to accessing items from the configura-
tion files (e.g., the time loop).

class SimulationData(sim_name)
Structure to hold simulation data stored into the sim_map entry in the configurationManager class

create_simulation(sim_name, config_file, override, sub_workflow=False)

get_all_simulation_components_map()

4.6. Component 61

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

get_component_map()
Return a dictionary of simulation names and lists of component references. (May only be the driver, and
init (if present)???)

get_config_parameter(sim_name, param)
Return value of param from simulation configuration file for sim_name.

get_framework_components()
Return list of framework components.

get_platform_parameter(param, silent=False)
Return value of platform parameter param. If silent is False (default) None is returned when param not
found, otherwise an exception is raised.

get_port(sim_name, port_name)
Return a reference to the component from simulation sim_name implementing port port_name.

get_sim_names()
Return list of names of simulations.

get_sim_parameter(sim_name, param)
Return value of param from simulation configuration file for sim_name.

get_simulation_components(sim_name)

initialize(data_mgr, resource_mgr, task_mgr)
Parse the platform and simulation configuration files using the ConfigObj module. Create and initialize
simulation(s) and their components, framework components and loggers.

process_service_request(msg)
Invokes public configuration manager method for a component. Return method’s return value.

set_config_parameter(sim_name, param, value, target_sim_name)
Set the configuration parameter param to value value in target_sim_name. If target_sim_name is the
framework, all simulations will get the change. Return value.

terminate(status)
Terminates all processes attached to the framework. status not used.

terminate_sim(sim_name)

4.8 Services

class ipsframework.services.ServicesProxy(fwk, fwk_in_q, svc_response_q, sim_conf,
log_pipe_name)

add_task(task_pool_name, task_name, nproc, working_dir, binary, *args, **keywords)
Add task task_name to task pool task_pool_name. Remaining arguments are the same as in
ServicesProxy.launch_task().

call(component_id, method_name, *args, **keywords)
Invoke method method_name on component component_id with optional arguments *args. Return result
from invoking the method.

call_nonblocking(component_id, method_name, *args, **keywords)
Invoke method method_name on component component_id with optional arguments *args. Return call_id.

checkpoint_components(comp_id_list, time_stamp, Force=False, Protect=False)
Selectively checkpoint components in comp_id_list based on the configuration section CHECKPOINT. If
Force is True, the checkpoint will be taken even if the conditions for taking the checkpoint are not met.

62 Chapter 4. Code Listings

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

If Protect is True, then the data from the checkpoint is protected from clean up. Force and Protect are
optional and default to False.

The CHECKPOINT_MODE option controls determines if the components checkpoint methods are in-
voked.

Possible MODE options are:

ALL: Checkpint everytime the call is made (equivalent to always setting Force =True)

WALLTIME_REGULAR: checkpoints are saved upon invocation of the service call
checkpoint_components(), when a time interval greater than, or equal to, the value of
the configuration parameter WALLTIME_INTERVAL had passed since the last checkpoint. A
checkpoint is assumed to have happened (but not actually stored) when the simulation starts. Calls to
checkpoint_components() before WALLTIME_INTERVAL seconds have passed since the
last successful checkpoint result in a NOOP.

WALLTIME_EXPLICIT: checkpoints are saved when the simulation wall clock time exceeds one of the
(ordered) list of time values (in seconds) specified in the variable WALLTIME_VALUES. Let [t_0,
t_1, . . . , t_n] be the list of wall clock time values specified in the configuration parameter WALL-
TIME_VALUES. Then checkpoint(T) = True if T >= t_j, for some j in [0,n] and there is no other time
T_1, with T > T_1 >= T_j such that checkpoint(T_1) = True. If the test fails, the call results in a
NOOP.

PHYSTIME_REGULAR: checkpoints are saved at regularly spaced “physics time” intervals, specified
in the configuration parameter PHYSTIME_INTERVAL. Let PHYSTIME_INTERVAL = PTI, and
the physics time stamp argument in the call to checkpoint_components() be pts_i, with i = 0, 1, 2, . . .
Then checkpoint(pts_i) = True if pts_i >= n PTI , for some n in 1, 2, 3, . . . and pts_i - pts_prev >=
PTI, where checkpoint(pts_prev) = True and pts_prev = max (pts_0, pts_1, ..pts_i-1). If the test fails,
the call results in a NOOP.

PHYSTIME_EXPLICIT: checkpoints are saved when the physics time equals or exceeds one of the
(ordered) list of physics time values (in seconds) specified in the variable PHYSTIME_VALUES.
Let [pt_0, pt_1, . . . , pt_n] be the list of physics time values specified in the configuration parameter
PHYSTIME_VALUES. Then checkpoint(pt) = True if pt >= pt_j, for some j in [0,n] and there is no
other physics time pt_k, with pt > pt_k >= pt_j such that checkpoint(pt_k) = True. If the test fails, the
call results in a NOOP.

The configuration parameter NUM_CHECKPOINT controls how many checkpoints to keep on disk.
Checkpoints are deleted in a FIFO manner, based on their creation time. Possible values of
NUM_CHECKPOINT are:

• NUM_CHECKPOINT = n, with n > 0 –> Keep the most recent n checkpoints

• NUM_CHECKPOINT = 0 –> No checkpoints are made/kept (except when Force = True)

• NUM_CHECKPOINT < 0 –> Keep ALL checkpoints

Checkpoints are saved in the directory ${SIM_ROOT}/restart

cleanup()
Clean up any state from the services. Called by the terminate method in the base class for components.

create_simulation(config_file, override)

create_sub_workflow(sub_name, config_file, override=None, input_dir=None)

create_task_pool(task_pool_name)
Create an empty pool of tasks with the name task_pool_name. Raise exception if duplicate name.

critical(*args)
Produce critical message in simulation log file. Raise exception for bad formatting.

4.8. Services 63

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

debug(*args)
Produce debugging message in simulation log file. Raise exception for bad formatting.

error(*args)
Produce error message in simulation log file. Raise exception for bad formatting.

exception(*args)
Produce exception message in simulation log file. Raise exception for bad formatting.

get_config_param(param, silent=False)
Return the value of the configuration parameter param. Raise exception if not found.

get_finished_tasks(task_pool_name)
Return dictionary of finished tasks and return values in task pool task_pool_name. Raise exception if no
active or finished tasks.

get_port(port_name)
Return a reference to the component implementing port port_name.

get_restart_files(restart_root, timeStamp, file_list)
Copy files needed for component restart from the restart directory:

<restart_root>/restart/<timeStamp>/components/$CLASS_${SUB_CLASS}_$NAME_${SEQ_
→˓NUM}

to the component’s work directory.

Copying errors are not fatal (exception raised).

get_time_loop()
Return the list of times as specified in the configuration file.

get_working_dir()
Return the working directory of the calling component.

The structure of the working directory is defined using the configuration parameters CLASS, SUB_CLASS,
and NAME of the component configuration section. The structure of the working directory is:

${SIM_ROOT}/work/$CLASS_${SUB_CLASS}_$NAME_<instance_num>

info(*args)
Produce informational message in simulation log file. Raise exception for bad formatting.

kill_all_tasks()
Kill all tasks associated with this component.

kill_task(task_id)
Kill launched task task_id. Return if successful. Raises exceptions if the task or process cannot be found
or killed successfully.

launch_task(nproc, working_dir, binary, *args, **keywords)
Launch binary in working_dir on nproc processes. *args are any arguments to be passed to the binary on
the command line. **keywords are any keyword arguments used by the framework to manage how the
binary is launched. Keywords may be the following:

• task_ppn : the processes per node value for this task

• block : specifies that this task will block (or raise an exception) if not enough resources are available
to run immediately. If True, the task will be retried until it runs. If False, an exception is raised
indicating that there are not enough resources, but it is possible to eventually run. (default = True)

• tag : identifier for the portal. May be used to group related tasks.

64 Chapter 4. Code Listings

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

• logfile : file name for stdout (and stderr) to be redirected to for this task. By default stderr is
redirected to stdout, and stdout is not redirected.

• whole_nodes : if True, the task will be given exclusive access to any nodes it is assigned. If False,
the task may be assigned nodes that other tasks are using or may use.

• whole_sockets : if True, the task will be given exclusive access to any sockets of nodes it is assigned.
If False, the task may be assigned sockets that other tasks are using or may use.

Return task_id if successful. May raise exceptions related to opening the logfile, being unable to obtain
enough resources to launch the task (ipsExceptions.InsufficientResourcesException),
bad task launch request (ipsExceptions.ResourceRequestMismatchException,
ipsExceptions.BadResourceRequestException) or problems executing the command.
These exceptions may be used to retry launching the task as appropriate.

Note: This is a nonblocking function, users must use a version of ServicesProxy.wait_task()
to get result.

launch_task_pool(task_pool_name, launch_interval=0.0)
Construct messages to task manager to launch each task. Used by TaskPool to launch tasks in a
task_pool.

launch_task_resilient(nproc, working_dir, binary, *args, **keywords)
not used

log(*args)
Wrapper for ServicesProxy.info().

merge_current_state(partial_state_file, logfile=None, merge_binary=None)
Merge partial plasma state with global state. Partial plasma state contains only the values that the compo-
nent contributes to the simulation. Raise exceptions on bad merge. Optional logfile will capture stdout
from merge. Optional merge_binary specifies path to executable code to do the merge (default value :
“update_state”)

process_events()
Poll for events on subscribed topics.

publish(topicName, eventName, eventBody)
Publish event consisting of eventName and eventBody to topic topicName to the IPS event service.

remove_task_pool(task_pool_name)
Kill all running tasks, clean up all finished tasks, and delete task pool.

save_restart_files(timeStamp, file_list)
Copy files needed for component restart to the restart directory:

${SIM_ROOT}/restart/$timestamp/components/$CLASS_${SUB_CLASS}_$NAME

Copying errors are not fatal (exception raised).

send_portal_event(event_type=’COMPONENT_EVENT’, event_comment=”)
Send event to web portal.

setMonitorURL(url=”)
Send event to portal setting the URL where the monitor component will put data.

set_config_param(param, value, target_sim_name=None)
Set configuration parameter param to value. Raise exceptions if the parameter cannot be changed or if
there are problems setting the value.

4.8. Services 65

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

stage_input_files(input_file_list)
Copy component input files to the component working directory (as obtained via a call to
ServicesProxy.get_working_dir()). Input files are assumed to be originally located in the
directory variable INPUT_DIR in the component configuration section.

stage_output_files(timeStamp, file_list, keep_old_files=True, save_plasma_state=True)
Copy associated component output files (from the working directory) to the component simulation results
directory. Output files are prefixed with the configuration parameter OUTPUT_PREFIX. The simulation
results directory has the format:

${SIM_ROOT}/simulation_results/<timeStamp>/components/$CLASS_${SUB_CLASS}_
→˓$NAME_${SEQ_NUM}

Additionally, plasma state files are archived for debugging purposes:

${SIM_ROOT}/history/plasma_state/<file_name>_$CLASS_${SUB_CLASS}_$NAME_
→˓<timeStamp>

Copying errors are not fatal (exception raised).

stage_state(state_files=None)
Copy current state to work directory.

stage_subflow_output_files(subflow_name=’ALL’)

submit_tasks(task_pool_name, block=True, use_dask=False, dask_nodes=1, dask_ppn=None,
launch_interval=0.0)

Launch all unfinished tasks in task pool task_pool_name. If block is True, return when all tasks have been
launched. If block is False, return when all tasks that can be launched immediately have been launched.
Return number of tasks submitted.

subscribe(topicName, callback)
Subscribe to topic topicName on the IPS event service and register callback as the method to be invoked
whem an event is published to that topic.

unsubscribe(topicName)
Remove subscription to topic topicName.

update_state(state_files=None)
Copy local (updated) state to global state. If no state files are specified, component configuration specifi-
cation is used. Raise exceptions upon copy.

update_time_stamp(new_time_stamp=-1)
Update time stamp on portal.

wait_call(call_id, block=True)
If block is True, return when the call has completed with the return code from the call. If block is False,
raise ipsExceptions.IncompleteCallException if the call has not completed, and the return
value is it has.

wait_call_list(call_id_list, block=True)
Check the status of each of the call in call_id_list. If block is True, return when all calls are finished. If
block is False, raise ipsExceptions.IncompleteCallException if any of the calls have not
completed, otherwise return. The return value is a dictionary of call_ids and return values.

wait_task(task_id, timeout=-1, delay=1)
Check the status of task task_id. Return the return value of the task when finished successfully. Raise
exceptions if the task is not found, or if there are problems finalizing the task.

66 Chapter 4. Code Listings

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

wait_task_nonblocking(task_id)
Check the status of task task_id. If it has finished, the return value is populated with the actual value,
otherwise None is returned. A KeyError exception may be raised if the task is not found.

wait_task_resilient(task_id)
not used

wait_tasklist(task_id_list, block=True)
Check the status of a list of tasks. If block is True, return a dictionary of return values when all tasks have
completed. If block is False, return a dictionary containing entries for each completed task. Note that
the dictionary may be empty. Raise KeyError exception if task_id not found.

warning(*args)
Produce warning message in simulation log file. Raise exception for bad formatting.

class ipsframework.services.Task(task_name, nproc, working_dir, binary, *args, **keywords)
Container for task information:

• name: task name

• nproc: number of processes the task needs

• working_dir: location to launch task from

• binary: full path to executable to launch

• *args: arguments for binary

• **keywords: keyword arguments for launching the task. See ServicesProxy.launch_task() for
details.

class ipsframework.services.TaskPool(name, services)
Class to contain and manage a pool of tasks.

add_task(task_name, nproc, working_dir, binary, *args, **keywords)
Create Task object and add to queued_tasks of the task pool. Raise exception if task name already exists
in task pool.

dask = None

distributed = None

get_dask_finished_tasks_status()

get_finished_tasks_status()
Return a dictionary of exit status values for all tasks that have finished since the last time finished tasks
were polled.

submit_dask_tasks(block=True, dask_nodes=1, dask_ppn=None)

submit_tasks(block=True, use_dask=False, dask_nodes=1, dask_ppn=None, launch_interval=0.0)
Launch tasks in queued_tasks. Finished tasks are handled before launching new ones. If block is True,
the number of tasks submited is returned after all tasks have been launched and completed. If block is
False the number of tasks that can immediately be launched is returned.

terminate_tasks()
Kill all active tasks, clear all queued, blocked and finished tasks.

4.8. Services 67

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

4.9 Other Utilities

4.9.1 IPS Exceptions

exception ipsframework.ipsExceptions.AllocatedNodeDownException(identifier, tid,
comp_id)

Exception is raised when an allocated node is discovered to be faulty. The task manager should catch the
exception and do something with it.

exception ipsframework.ipsExceptions.BadResourceRequestException(caller_id,
tid, request,
deficit)

Exception raised by the resource manager when a component requests a quantity of resources that can never be
satisfied during a get_allocation() call

exception ipsframework.ipsExceptions.BlockedMessageException(msg, reason)
Exception Raised by the any manager when a blocking service invocation is made, and the invocation result is
not readily available.

exception ipsframework.ipsExceptions.IncompleteCallException(callID)
Exception Raised by the taskManager when a nonblocking wait_call() method is invoked before the call has
finished.

exception ipsframework.ipsExceptions.InsufficientResourcesException(caller_id,
tid, re-
quest,
deficit)

Exception Raised by the resource manager when not enough resources are available to satisfy an allocate() call

exception ipsframework.ipsExceptions.InvalidResourceSettingsException(t, spn,
cpn)

Exception raised by the resource helper to indicate inconsistent resource settings.

exception ipsframework.ipsExceptions.NonexistentResourceException(identifier)
Exception for any time nonexistent (nodes) are tried to be used

exception ipsframework.ipsExceptions.ReleaseMismatchException(caller_id,
tid, old_alc,
old_avc, new_alc,
new_avc)

Exception raised by the resource manager when a release allocation request accounting yields unexpected re-
sults.

exception ipsframework.ipsExceptions.ResourceRequestMismatchException(caller_id,
tid,
nproc,
ppn,
max_procs,
max_ppn)

Exception raised by the resource manager when it is possible to launch the requested number of processes, but
not on the requested number of processes per node.

4.9.2 IPS Utilities

ipsframework.ipsutil.copyFiles(src_dir, src_file_list, target_dir, prefix=”, keep_old=False)
Copy files in src_file_list from src_dir to target_dir with an optional prefix. If keep_old is True, existing

68 Chapter 4. Code Listings

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

files in target_dir will not be overridden, otherwise files can be clobbered (default). Wild-cards in file name
specification are allowed.

ipsframework.ipsutil.getTimeString(timeArg=None)
Return a string representation of timeArg. timeArg is expected to be an appropriate object to be processed by
time.strftime(). If timeArg is None, current time is used.

ipsframework.ipsutil.which(program, alt_paths=None)

class ipsframework.messages.ExitMessage(sender_id, receiver_id, status, *args)
Message used to communicate the exit status of a component.

• sender_id: component id that is telling the component to die (framework)

• receiver_id: component id that is to die

• status: either Messages.SUCCESS or Messages.FAILURE indicating if the exit request is due to the sim-
ulation finishing successfully or in error.

• *args: other information passed to the component to die.

counter = 0

delimiter = '|'

identifier = 'EXIT'

class ipsframework.messages.Message(sender_id, receiver_id)
Base class for all IPS messages. Should not be used in actual communication.

FAILURE = 1

SUCCESS = 0

counter = 0

delimiter = ''

get_message_id()

identifier = 'MESSAGE'

class ipsframework.messages.MethodInvokeMessage(sender_id, receiver_id, call_id, tar-
get_method, *args, **keywords)

Message used by components to invoke methods on other components.

• sender_id: component id of the sender

• receiver_id: component id of the receiver

• call_id: identifier of the call (generated by caller)

• target_method: method to be invoked on the receiver

• *args: arguments to be passed to the target_method

counter = 0

delimiter = '|'

identifier = 'INVOKE'

class ipsframework.messages.MethodResultMessage(sender_id, receiver_id, call_id, status,
*args)

Message used to relay the return value after a method invocation.

• sender_id: component id of the sender (callee)

• receiver_id: component id of the receiver (caller)

4.9. Other Utilities 69

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

• call_id: identifier of the call (generated by caller)

• status: either Message.SUCCESS or Message.FAILURE indicating the success of failure of the invocation.

• *args: other information to be passed back to the caller.

counter = 0

delimiter = '|'

identifier = 'RESULT'

class ipsframework.messages.ServiceRequestMessage(sender_id, receiver_id, tar-
get_comp_id, target_method,
*args, **keywords)

Message used by components to request the result of a service action by one of the IPS managers.

• sender_id: component id of the sender

• receiver_id: component id of the receiver (framework)

• target_comp_id: component id of target component (typically framework)

• target_method: name of method to be invoked on component target_comp_id

• *args: any number of arguments. These are specific to the target method.

counter = 0

delimiter = '|'

identifier = 'REQUEST'

class ipsframework.messages.ServiceResponseMessage(sender_id, receiver_id, re-
quest_msg_id, status, *args)

Message used by managers to respond with the result of the service action to the calling component.

• sender_id: component id of the sender (framework)

• receiver_id: component id of the receiver (calling component)

• request_msg_id: id of request message this is a response to.

• status: either Message.SUCCESS or Message.FAILURE

• *args: any number of arguments. These are specific to type of response.

counter = 0

delimiter = '|'

identifier = 'RESPONSE'

4.10 Framework Components

class ipsframework.portalBridge.PortalBridge(services, config)
Framework component to communicate with the SWIM web portal.

class SimulationData
Container for simulation data.

finalize(timestamp=0.0, **keywords)
Produce some default debugging information before the rest of the code is executed.

get_elapsed_time()
Return total elapsed time since simulation started in seconds (including a possible fraction)

70 Chapter 4. Code Listings

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

init(timestamp=0.0, **keywords)
Try to connect to the portal, subscribe to _IPS_MONITOR events and register callback
process_event().

init_simulation(sim_name, sim_root)
Create and send information about simulation sim_name living in sim_root so the portal can set up corre-
sponding structures to manage data from the sim.

process_event(topicName, theEvent)
Process a single event theEvent on topic topicName.

send_event(sim_data, event_data)
Send contents of event_data and sim_data to portal.

send_mpo_data(event_data, sim_data)

step(timestamp=0.0, **keywords)
Poll for events.

ipsframework.portalBridge.configure_mpo()

ipsframework.portalBridge.hash_file(file_name)
Return the MD5 hash of a file :rtype: str :param file_name: Full path to file :return: MD5 of file_name

ipsframework.runspaceInitComponent.catch_and_go(func_to_decorate)

class ipsframework.runspaceInitComponent.runspaceInitComponent(services, con-
fig)

Framework component to manage runspace initialization, container file management, and file staging for simu-
lation and analysis runs.

init(**original_kwargs)

step(**original_kwargs)

4.10. Framework Components 71

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

72 Chapter 4. Code Listings

CHAPTER 5

Indexes and tables

• genindex

• modindex

• search

73

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

74 Chapter 5. Indexes and tables

Python Module Index

i
ipsframework.component, 61
ipsframework.configurationManager, 61
ipsframework.dataManager, 55
ipsframework.ips, 53
ipsframework.ipsExceptions, 68
ipsframework.ipsutil, 68
ipsframework.messages, 69
ipsframework.portalBridge, 70
ipsframework.resourceHelper, 60
ipsframework.resourceManager, 57
ipsframework.runspaceInitComponent, 71
ipsframework.services, 62
ipsframework.taskManager, 56

75

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

76 Python Module Index

Index

A
add_nodes() (ipsframe-

work.resourceManager.ResourceManager
method), 57

add_task() (ipsframework.services.ServicesProxy
method), 62

add_task() (ipsframework.services.TaskPool
method), 67

allocate() (ipsframework.node_structure.Core
method), 60

allocate() (ipsframework.node_structure.Node
method), 59

allocate() (ipsframework.node_structure.Socket
method), 60

AllocatedNodeDownException, 68

B
BadResourceRequestException, 68
begin_RM_report() (ipsframe-

work.resourceManager.ResourceManager
method), 58

BlockedMessageException, 68
build_launch_cmd() (ipsframe-

work.taskManager.TaskManager method),
56

C
call() (ipsframework.services.ServicesProxy method),

62
call_nonblocking() (ipsframe-

work.services.ServicesProxy method), 62
catch_and_go() (in module ipsframe-

work.runspaceInitComponent), 71
check_core_cap() (ipsframe-

work.resourceManager.ResourceManager
method), 58

check_whole_node_cap() (ipsframe-
work.resourceManager.ResourceManager
method), 58

check_whole_sock_cap() (ipsframe-
work.resourceManager.ResourceManager
method), 58

checkpoint() (ipsframework.component.Component
method), 61

checkpoint_components() (ipsframe-
work.services.ServicesProxy method), 62

cleanup() (ipsframework.services.ServicesProxy
method), 63

Component (class in ipsframework.component), 61
ConfigurationManager (class in ipsframe-

work.configurationManager), 61
ConfigurationManager.SimulationData

(class in ipsframework.configurationManager),
61

configure_mpo() (in module ipsframe-
work.portalBridge), 71

copyFiles() (in module ipsframework.ipsutil), 68
Core (class in ipsframework.node_structure), 60
counter (ipsframework.messages.ExitMessage at-

tribute), 69
counter (ipsframework.messages.Message attribute),

69
counter (ipsframework.messages.MethodInvokeMessage

attribute), 69
counter (ipsframework.messages.MethodResultMessage

attribute), 70
counter (ipsframework.messages.ServiceRequestMessage

attribute), 70
counter (ipsframework.messages.ServiceResponseMessage

attribute), 70
create_simulation() (ipsframe-

work.configurationManager.ConfigurationManager
method), 61

create_simulation() (ipsframe-
work.services.ServicesProxy method), 63

create_sub_workflow() (ipsframe-
work.services.ServicesProxy method), 63

create_task_pool() (ipsframe-
work.services.ServicesProxy method), 63

77

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

critical() (ipsframework.ips.Framework method),
54

critical() (ipsframework.services.ServicesProxy
method), 63

D
dask (ipsframework.services.TaskPool attribute), 67
DataManager (class in ipsframework.dataManager),

55
debug() (ipsframework.ips.Framework method), 54
debug() (ipsframework.services.ServicesProxy

method), 63
delimiter (ipsframework.messages.ExitMessage at-

tribute), 69
delimiter (ipsframework.messages.Message at-

tribute), 69
delimiter (ipsframe-

work.messages.MethodInvokeMessage at-
tribute), 69

delimiter (ipsframe-
work.messages.MethodResultMessage at-
tribute), 70

delimiter (ipsframe-
work.messages.ServiceRequestMessage at-
tribute), 70

delimiter (ipsframe-
work.messages.ServiceResponseMessage
attribute), 70

distributed (ipsframework.services.TaskPool at-
tribute), 67

E
error() (ipsframework.ips.Framework method), 54
error() (ipsframework.services.ServicesProxy

method), 64
exception() (ipsframework.ips.Framework method),

54
exception() (ipsframework.services.ServicesProxy

method), 64
ExitMessage (class in ipsframework.messages), 69

F
FAILURE (ipsframework.messages.Message attribute),

69
finalize() (ipsframework.component.Component

method), 61
finalize() (ipsframework.portalBridge.PortalBridge

method), 70
finish_task() (ipsframe-

work.taskManager.TaskManager method),
56

Framework (class in ipsframework.ips), 54

G
get_all_simulation_components_map()

(ipsframework.configurationManager.ConfigurationManager
method), 61

get_allocation() (ipsframe-
work.resourceManager.ResourceManager
method), 58

get_call_id() (ipsframe-
work.taskManager.TaskManager method),
56

get_checkjob_info() (in module ipsframe-
work.resourceHelper), 60

get_component_map() (ipsframe-
work.configurationManager.ConfigurationManager
method), 61

get_config_param() (ipsframe-
work.services.ServicesProxy method), 64

get_config_parameter() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

get_dask_finished_tasks_status() (ips-
framework.services.TaskPool method), 67

get_elapsed_time() (ipsframe-
work.portalBridge.PortalBridge method),
70

get_finished_tasks() (ipsframe-
work.services.ServicesProxy method), 64

get_finished_tasks_status() (ipsframe-
work.services.TaskPool method), 67

get_framework_components() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

get_inq() (ipsframework.ips.Framework method), 54
get_message_id() (ipsframe-

work.messages.Message method), 69
get_pbs_info() (in module ipsframe-

work.resourceHelper), 60
get_platform_parameter() (ipsframe-

work.configurationManager.ConfigurationManager
method), 62

get_port() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

get_port() (ipsframework.services.ServicesProxy
method), 64

get_qstat_jobinfo() (in module ipsframe-
work.resourceHelper), 61

get_qstat_jobinfo2() (in module ipsframe-
work.resourceHelper), 61

get_restart_files() (ipsframe-
work.services.ServicesProxy method), 64

get_sim_names() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

78 Index

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

get_sim_parameter() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

get_simulation_components() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

get_slurm_info() (in module ipsframe-
work.resourceHelper), 61

get_task_id() (ipsframe-
work.taskManager.TaskManager method),
56

get_time_loop() (ipsframe-
work.services.ServicesProxy method), 64

get_working_dir() (ipsframe-
work.services.ServicesProxy method), 64

getResourceList() (in module ipsframe-
work.resourceHelper), 60

getTimeString() (in module ipsframework.ipsutil),
69

H
hash_file() (in module ipsframework.portalBridge),

71

I
identifier (ipsframework.messages.ExitMessage at-

tribute), 69
identifier (ipsframework.messages.Message at-

tribute), 69
identifier (ipsframe-

work.messages.MethodInvokeMessage at-
tribute), 69

identifier (ipsframe-
work.messages.MethodResultMessage at-
tribute), 70

identifier (ipsframe-
work.messages.ServiceRequestMessage at-
tribute), 70

identifier (ipsframe-
work.messages.ServiceResponseMessage
attribute), 70

IncompleteCallException, 68
info() (ipsframework.ips.Framework method), 54
info() (ipsframework.services.ServicesProxy method),

64
init() (ipsframework.component.Component method),

61
init() (ipsframework.portalBridge.PortalBridge

method), 71
init() (ipsframework.runspaceInitComponent.runspaceInitComponent

method), 71
init_call() (ipsframe-

work.taskManager.TaskManager method),
56

init_simulation() (ipsframe-
work.portalBridge.PortalBridge method),
71

init_task() (ipsframe-
work.taskManager.TaskManager method),
56

init_task_pool() (ipsframe-
work.taskManager.TaskManager method),
57

initialize() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

initialize() (ipsframe-
work.resourceManager.ResourceManager
method), 59

initialize() (ipsframe-
work.taskManager.TaskManager method),
57

InsufficientResourcesException, 68
InvalidResourceSettingsException, 68
ipsframework.component (module), 61
ipsframework.configurationManager (mod-

ule), 61
ipsframework.dataManager (module), 55
ipsframework.ips (module), 53
ipsframework.ipsExceptions (module), 68
ipsframework.ipsutil (module), 68
ipsframework.messages (module), 69
ipsframework.portalBridge (module), 70
ipsframework.resourceHelper (module), 60
ipsframework.resourceManager (module), 57
ipsframework.runspaceInitComponent (mod-

ule), 71
ipsframework.services (module), 62
ipsframework.taskManager (module), 56

K
kill_all_tasks() (ipsframe-

work.services.ServicesProxy method), 64
kill_task() (ipsframework.services.ServicesProxy

method), 64

L
launch_task() (ipsframe-

work.services.ServicesProxy method), 64
launch_task_pool() (ipsframe-

work.services.ServicesProxy method), 65
launch_task_resilient() (ipsframe-

work.services.ServicesProxy method), 65
log() (ipsframework.ips.Framework method), 54
log() (ipsframework.services.ServicesProxy method),

65

Index 79

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

M
manual_detection() (in module ipsframe-

work.resourceHelper), 61
merge_current_plasma_state() (ipsframe-

work.dataManager.DataManager method),
55

merge_current_state() (ipsframe-
work.services.ServicesProxy method), 65

Message (class in ipsframework.messages), 69
MethodInvokeMessage (class in ipsframe-

work.messages), 69
MethodResultMessage (class in ipsframe-

work.messages), 69

N
Node (class in ipsframework.node_structure), 59
NonexistentResourceException, 68

P
PortalBridge (class in ipsframework.portalBridge),

70
PortalBridge.SimulationData (class in ips-

framework.portalBridge), 70
print_cores() (ipsframework.node_structure.Socket

method), 60
print_sockets() (ipsframe-

work.node_structure.Node method), 60
printCurrTaskTable() (ipsframe-

work.taskManager.TaskManager method),
57

printRMState() (ipsframe-
work.resourceManager.ResourceManager
method), 59

process_event() (ipsframe-
work.portalBridge.PortalBridge method),
71

process_events() (ipsframe-
work.services.ServicesProxy method), 65

process_service_request() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

process_service_request() (ipsframe-
work.dataManager.DataManager method),
55

process_service_request() (ipsframe-
work.resourceManager.ResourceManager
method), 59

process_service_request() (ipsframe-
work.taskManager.TaskManager method),
57

publish() (ipsframework.services.ServicesProxy
method), 65

R
register_service_handler() (ipsframe-

work.ips.Framework method), 54
release() (ipsframework.node_structure.Core

method), 60
release() (ipsframework.node_structure.Node

method), 60
release() (ipsframework.node_structure.Socket

method), 60
release_allocation() (ipsframe-

work.resourceManager.ResourceManager
method), 59

ReleaseMismatchException, 68
remove_task_pool() (ipsframe-

work.services.ServicesProxy method), 65
report_RM_status() (ipsframe-

work.resourceManager.ResourceManager
method), 59

ResourceManager (class in ipsframe-
work.resourceManager), 57

ResourceRequestMismatchException, 68
restart() (ipsframework.component.Component

method), 61
return_call() (ipsframe-

work.taskManager.TaskManager method),
57

run() (ipsframework.ips.Framework method), 54
runspaceInitComponent (class in ipsframe-

work.runspaceInitComponent), 71

S
save_restart_files() (ipsframe-

work.services.ServicesProxy method), 65
send_event() (ipsframe-

work.portalBridge.PortalBridge method),
71

send_mpo_data() (ipsframe-
work.portalBridge.PortalBridge method),
71

send_portal_event() (ipsframe-
work.services.ServicesProxy method), 65

send_terminate_msg() (ipsframe-
work.ips.Framework method), 55

sendEvent() (ipsframe-
work.resourceManager.ResourceManager
method), 59

ServiceRequestMessage (class in ipsframe-
work.messages), 70

ServiceResponseMessage (class in ipsframe-
work.messages), 70

ServicesProxy (class in ipsframework.services), 62
set_config_param() (ipsframe-

work.services.ServicesProxy method), 65

80 Index

Integrated Plasma Simulator (IPS) Documentation, Release 0.2.1+0.g9b88e23.dirty

set_config_parameter() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

setMonitorURL() (ipsframe-
work.services.ServicesProxy method), 65

Socket (class in ipsframework.node_structure), 60
stage_input_files() (ipsframe-

work.services.ServicesProxy method), 65
stage_output_files() (ipsframe-

work.services.ServicesProxy method), 66
stage_state() (ipsframe-

work.dataManager.DataManager method),
55

stage_state() (ipsframe-
work.services.ServicesProxy method), 66

stage_subflow_output_files() (ipsframe-
work.services.ServicesProxy method), 66

step() (ipsframework.component.Component method),
61

step() (ipsframework.portalBridge.PortalBridge
method), 71

step() (ipsframework.runspaceInitComponent.runspaceInitComponent
method), 71

submit_dask_tasks() (ipsframe-
work.services.TaskPool method), 67

submit_tasks() (ipsframe-
work.services.ServicesProxy method), 66

submit_tasks() (ipsframework.services.TaskPool
method), 67

subscribe() (ipsframework.services.ServicesProxy
method), 66

SUCCESS (ipsframework.messages.Message attribute),
69

T
Task (class in ipsframework.services), 67
TaskManager (class in ipsframework.taskManager),

56
TaskPool (class in ipsframework.services), 67
terminate() (ipsframework.component.Component

method), 61
terminate() (ipsframe-

work.configurationManager.ConfigurationManager
method), 62

terminate_all_sims() (ipsframe-
work.ips.Framework method), 55

terminate_sim() (ipsframe-
work.configurationManager.ConfigurationManager
method), 62

terminate_tasks() (ipsframe-
work.services.TaskPool method), 67

U
unsubscribe() (ipsframe-

work.services.ServicesProxy method), 66
update_state() (ipsframe-

work.dataManager.DataManager method),
55

update_state() (ipsframe-
work.services.ServicesProxy method), 66

update_time_stamp() (ipsframe-
work.services.ServicesProxy method), 66

W
wait_call() (ipsframework.services.ServicesProxy

method), 66
wait_call() (ipsframe-

work.taskManager.TaskManager method),
57

wait_call_list() (ipsframe-
work.services.ServicesProxy method), 66

wait_task() (ipsframework.services.ServicesProxy
method), 66

wait_task_nonblocking() (ipsframe-
work.services.ServicesProxy method), 66

wait_task_resilient() (ipsframe-
work.services.ServicesProxy method), 67

wait_tasklist() (ipsframe-
work.services.ServicesProxy method), 67

warning() (ipsframework.ips.Framework method), 55
warning() (ipsframework.services.ServicesProxy

method), 67
which() (in module ipsframework.ipsutil), 69

Index 81

	Introduction
	Where to Start?
	Acknowledgments

	Getting Started
	Obtaining, Dependencies, Platforms
	Building and Setting up Your Environment

	User Guides
	Reference Guide for Running IPS Simulations
	The Configuration File - Explained
	Platforms and Platform Configuration
	Developing Drivers and Components for IPS Simulations
	Create a component package
	Migrating from old IPS v0.1.0 to new IPS
	Installing IPS on NERSC

	Code Listings
	IPS
	Framework
	Data Manager
	Task Manager
	Resource Manager
	Component
	Configuration Manager
	Services
	Other Utilities
	Framework Components

	Indexes and tables
	Python Module Index
	Index

